OFFSET
1,2
COMMENTS
The binary sequence with run lengths given by A001511 (1,2,1,3,1,2,1,4,1, ...) begins 1001000100100001.... Truncated to the first n digits and expressed as decimal numbers, this yields:
1 1
10 2
100 4
1001 9
10010 18
100100 36
1001000 72
10010001 145
100100010 290
1001000100 580
10010001001 1161
100100010010 2322
1001000100100 4644
10010001001000 9288
100100010010000 18576
1001000100100001 37153
This is a superincreasing sequence (every element of the sequence is greater than the sum of all previous elements in the sequence).
The binary sequence appears to match the parity of A170849.
LINKS
Jeremy Gardiner, Table of n, a(n) for n = 1..40
PROG
(PARI) a001511(n) = valuation(n, 2) + 1;
lista(nn) = {a = 0; for (n=1, nn, for (j=1, a001511(n), a *= 2; if (n % 2, a += 1); print1(a, ", "); ); ); } \\ Michel Marcus, Jan 11 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jeremy Gardiner, Jan 04 2015
STATUS
approved