Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Dec 16 2018 07:12:01
%S 1388,2640,4196,6476,11937,25715,60586,151946,399466,1088906,3050986,
%T 8724746,25321066,74260106,219377386,651329546,1940386666,5793959306,
%U 17327479786,51873646346,155403356266,465774906506,1396454398186
%N Number of (3+1) X (n+1) 0..2 arrays with every 2 X 2 subblock diagonal minus antidiagonal sum nondecreasing horizontally, vertically and ne-to-sw antidiagonally.
%H R. H. Hardin, <a href="/A253497/b253497.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>9.
%F Empirical: a(n) = 400*3^(n-3) + 415*2^(n-1) + 1626 for n>6.
%F Empirical g.f.: x*(1388 - 5688*x + 3624*x^2 + 2012*x^3 + 3397*x^4 + 153*x^5 - 1253*x^6 - 327*x^7 - 54*x^8) / ((1 - x)*(1 - 2*x)*(1 - 3*x)). - _Colin Barker_, Dec 16 2018
%e Some solutions for n=4:
%e ..0..1..1..2..2....0..2..2..1..1....0..1..1..1..1....0..1..2..2..2
%e ..2..2..1..1..0....1..1..1..0..0....1..1..0..0..0....1..1..1..1..1
%e ..2..2..1..1..0....1..1..1..0..0....2..1..0..0..0....2..2..2..2..2
%e ..0..0..0..1..2....0..0..0..0..1....2..1..0..0..2....1..1..1..1..1
%Y Row 3 of A253495.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 02 2015