login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+1)X(5+1) 0..2 arrays with every 2X2 subblock sum nondecreasing horizontally, vertically and antidiagonally ne-to-sw
1

%I #4 Dec 30 2014 19:57:38

%S 49284,945748,17316309,105139503,811079978,3064820088,15266963762,

%T 46594669823,183640326404,504701623213,1742674651858,4556363874541,

%U 14582633777648,37447063241552,114895093706618,295691837512799

%N Number of (n+1)X(5+1) 0..2 arrays with every 2X2 subblock sum nondecreasing horizontally, vertically and antidiagonally ne-to-sw

%C Column 5 of A253375

%H R. H. Hardin, <a href="/A253372/b253372.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 9*a(n-1) +18*a(n-2) -390*a(n-3) +363*a(n-4) +7557*a(n-5) -16924*a(n-6) -85080*a(n-7) +289038*a(n-8) +592626*a(n-9) -3022596*a(n-10) -2302692*a(n-11) +22010974*a(n-12) +263586*a(n-13) -118108608*a(n-14) +60625464*a(n-15) +480363315*a(n-16) -453795339*a(n-17) -1497838078*a(n-18) +2041953882*a(n-19) +3566209239*a(n-20) -6619257735*a(n-21) -6304597140*a(n-22) +16357594512*a(n-23) +7550240128*a(n-24) -31527338352*a(n-25) -3791317152*a(n-26) +47758481952*a(n-27) -6659648352*a(n-28) -56728278048*a(n-29) +20129722880*a(n-30) +52207707264*a(n-31) -28856183808*a(n-32) -36302235648*a(n-33) +27669476352*a(n-34) +18144427008*a(n-35) -18828638464*a(n-36) -5799153408*a(n-37) +9055982592*a(n-38) +719677440*a(n-39) -2944438272*a(n-40) +244629504*a(n-41) +582598656*a(n-42) -119439360*a(n-43) -53084160*a(n-44) +15925248*a(n-45) for n>61

%e Some solutions for n=5

%e ..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0

%e ..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0

%e ..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0

%e ..0..0..0..0..1..1....0..0..0..0..2..1....0..0..0..0..2..0....0..0..0..0..1..2

%e ..1..0..1..1..2..1....1..1..1..2..0..1....1..1..2..1..2..1....0..0..1..2..0..1

%e ..1..2..2..2..2..2....0..2..1..1..2..2....1..2..1..2..2..2....0..2..1..0..2..2

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 30 2014