login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every 2X2 subblock diagonal maximum minus antidiagonal maximum nondecreasing horizontally, vertically and ne-to-sw antidiagonally
14

%I #4 Dec 30 2014 14:43:19

%S 16,47,47,125,173,125,335,724,735,335,907,3160,4800,3192,907,2470,

%T 13810,31156,30920,13917,2470,6740,60368,200740,305872,199512,60779,

%U 6740,18406,263920,1294016,3006936,3013228,1285960,265605,18406,50278,1153880

%N T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every 2X2 subblock diagonal maximum minus antidiagonal maximum nondecreasing horizontally, vertically and ne-to-sw antidiagonally

%C Table starts

%C .....16.......47........125..........335............907.............2470

%C .....47......173........724.........3160..........13810............60368

%C ....125......735.......4800........31156.........200740..........1294016

%C ....335.....3192......30920.......305872........3006936.........29746140

%C ....907....13917.....199512......3013228.......44555528........665370612

%C ...2470....60779....1285960.....29779356......664592224......15101198444

%C ...6740...265605....8289288....294392852.....9887498224.....340936886060

%C ..18406..1161035...53433608...2912660356...147292687568....7720152604732

%C ..50278..5075841..344449224..28819853684..2193102920288..174647893015868

%C .137354.22191959.2220470152.285212776212.32661849908016.3953303875494396

%H R. H. Hardin, <a href="/A253350/b253350.txt">Table of n, a(n) for n = 1..361</a>

%F Empirical for column k:

%F k=1: a(n) = 3*a(n-1) -2*a(n-3) for n>6

%F k=2: a(n) = 6*a(n-1) -5*a(n-2) -12*a(n-3) +12*a(n-4) for n>6

%F k=3: [order 7] for n>8

%F k=4: [order 11] for n>14

%F k=5: [order 23] for n>25

%F k=6: [order 43] for n>46

%F k=7: [order 84] for n>87

%F Empirical for row n:

%F n=1: a(n) = 3*a(n-1) -2*a(n-3) for n>6

%F n=2: a(n) = 5*a(n-1) -12*a(n-3) for n>6

%F n=3: [order 7] for n>10

%F n=4: [order 11] for n>15

%F n=5: [order 23] for n>26

%F n=6: [order 43] for n>47

%F n=7: [order 84] for n>88

%e Some solutions for n=3 k=4

%e ..1..0..0..1..1....0..1..0..0..0....0..1..1..1..1....1..1..1..1..1

%e ..1..1..1..1..0....1..1..1..1..1....1..1..1..0..0....0..0..0..1..0

%e ..1..1..1..1..1....1..1..1..1..1....1..1..1..1..1....1..1..1..1..0

%e ..0..0..0..1..0....0..0..1..0..1....0..0..0..0..0....0..0..1..1..0

%Y Column 1 and row 1 are A204609

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 30 2014