Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #63 Jul 10 2016 23:45:43
%S 1,7,3,5,5,3,7,1,9,8,2,6,4,4,6,2,8,9,1,7,3,5,5,3,7,1,9,8,2,6,4,4,6,2,
%T 8,9,1,7,3,5,5,3,7,1,9,8,2,6,4,4,6,2,8,9,1,7,3,5,5,3,7,1,9,8,2,6,4,4,
%U 6,2,8,9
%N Digital root for the following sequences, F(4*n)/F(4); F(12*n)/F(12); F(20*n)/F(20), where the pattern increases by 8, ad infinitum, with the Fibonacci numbers F = A000045.
%C Cyclical and palindromic in two parts with periodicity 18: {1, 7, 3, 5, 5, 3, 7, 1, 9, 8, 2, 6, 4, 4, 6, 2, 8, 9}.
%C Digital root of the period is 9, its mean and median is 5, and its product is (9!)^2.
%C See A253368 for the initial motivation for this sequence.
%C From _Peter M. Chema_, Jul 04 2016: (Start)
%C A composite of three respective digital root sequences in alternation: a "halving sequence" of 1, 5, 7, 8, 4, 2, a "doubling sequence" of 7, 5, 1, 2, 4, 8, and a three-six-nine circuit of 3, 3, 9, 6, 6, 9.
%C Also the digital root of A000045(4n)/3 or A004187(n). In general terms, sequences defined by Fib(x*n)/ Fib(x) where x=(8*a-4) all share the same digital root (e.g., F(4*n)/F(4); F(12*n)/F(12); F(20*n)/F(20); F(28*n)/F(28); F(36*n)/F(36), etc.) (End)
%H Tom Barnett, <a href="https://www.youtube.com/watch?v=kxuU8jYkA1k">Phi VBM Tori Array</a>, YouTube video (see first two minutes).
%H <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1).
%F a(n) = A010888(A253368(n)).
%F G.f.: x*(1 + 7*x + 3*x^2 + 5*x^3 + 5*x^4 + 3*x^5 + 7*x^6 + x^7 + 9*x^8 + 8*x^9 + 2*x^10 + 6*x^11 + 4*x^12 + 4*x^13 + 6*x^14 + 2*x^15 + 8*x^16 + 9*x^17)/(1 - x^18). - _Vincenzo Librandi_, Mar 28 2016
%t f[n_] := Mod[ Fibonacci[ 12n]/144, 9]; Array[f, 5*18] (* _Robert G. Wilson v_, Jan 23 2015 *)
%t LinearRecurrence[{1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1},{1, 7, 3, 5, 5, 3, 7, 1, 9, 8, 2, 6, 4, 4, 6, 2, 8},72] (* _Ray Chandler_, Aug 12 2015 *)
%Y Cf. A010888, A253368, A070366 and A001370.
%K nonn,easy
%O 1,2
%A _Peter M. Chema_, Dec 30 2014
%E Edited. Numbers and name changed to fit A253368. Formula adapted. Cross reference added. - _Wolfdieter Lang_, Jan 28 2015
%E Name generalized by _Peter M. Chema_, Jul 04 2016