login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers with more composite divisors than prime divisors such that all the prime divisors are smaller than the composite divisors.
0

%I #39 Feb 07 2015 18:04:55

%S 8,12,16,18,24,27,30,32,36,45,48,50,54,63,64,70,72,75,81,90,96,98,105,

%T 108,125,128,135,144,147,150,154,162,165,175,182,189,192,195,216,225,

%U 231,242,243,245,250,256,270,273,275,286,288,315,324,325,338,343,350

%N Numbers with more composite divisors than prime divisors such that all the prime divisors are smaller than the composite divisors.

%C List of composite numbers with n >= 2 nontrivial divisors where the k smallest nontrivial divisors are all primes and the n - k largest nontrivial divisors are all nonprimes, 1 <= k < n.

%C Here the term "nontrivial divisors" only serves to exclude 1.

%C Except for semiprimes, all composite numbers have more composite divisors than prime divisors. - _Robert G. Wilson v_, Jan 12 2015

%e 36 is in the sequence because its nontrivial divisors are 2, 3, 4, 6, 9, 12, 18, and of these, the first two are prime and the rest are composite.

%e 40 is not in the sequence because its nontrivial divisors are 2, 4, 5, 8, 10, 20, and the composite divisor 4 falling between the prime divisors 2 and 5 disqualifies 40 from membership in the sequence.

%p filter:= proc(n)

%p local f,x;

%p f:= ifactors(n)[2];

%p if mul(t[2]+1,t=f) <= 2*nops(f)+1 then return false fi;

%p if f[1,2] > 1 then x:= f[1,1]^2 else x:= f[1,1]*f[2,1] fi;

%p max(seq(t[1],t=f)) < x

%p end proc:

%p select(filter, [$1..1000]); # _Robert Israel_, Jan 01 2015

%t ntd[n_] := (dlist = Divisors[n]; dlist[[2 ;; Length[dlist] - 1]])

%t test[n_] := (tlist = ntd[n];

%t If[tlist == {}, False,

%t index = 1;

%t While[index <= Length[tlist] && PrimeQ[tlist[[index]]] == True,

%t index = index + 1];

%t If[index == 1 || index > Length[tlist], False,

%t While[index <= Length[tlist] && PrimeQ[tlist[[index]]] == False,

%t index = index + 1];

%t If[index <= Length[tlist], False, True]]])

%t Select[Table[n, {n, 2, 2500, 1}], test] (* Savoric *)

%t primeDivs[n_Integer] := Select[Divisors[n], PrimeQ]; compDivs[n_Integer] := Drop[Complement[Divisors[n], primeDivs[n]], 1]; Select[Range[4, 500], Not[PrimeQ[#]] && primeDivs[#][[-1]] < compDivs[#][[1]] && Length[primeDivs[#]] < Length[compDivs[#]] &] (* _Alonso del Arte_, Dec 31 2014 *)

%t fQ[n_] := Block[{d = PrimeQ@ Most@ Rest@ Divisors@ n}, d[[1]] == True && d[[-1]] == False && Length@ Split@ d == 2]; Select[ Range@ 350, fQ] (* _Robert G. Wilson v_, Jan 12 2015 *)

%Y Cf. A137428.

%K nonn

%O 1,1

%A _Michael Savoric_, Dec 30 2014