login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients in the expansion of sn(t * x, m) / t in powers of x where t = sqrt( -1/2 - sqrt(1/6)), m = 5 - sqrt(24), and sn() is a Jacobi elliptic function.
1

%I #8 May 02 2015 13:18:04

%S 1,1,2,12,124,1844,39288,1134928,42346256,1985443536,114380311072,

%T 7938644848832,653292526793664,62901472582993984,7005466255571255168,

%U 893590563265303934208,129425758313629525647616,21124489015640181154724096,3859303832272520341300756992

%N Coefficients in the expansion of sn(t * x, m) / t in powers of x where t = sqrt( -1/2 - sqrt(1/6)), m = 5 - sqrt(24), and sn() is a Jacobi elliptic function.

%F The e.g.f. A(x) = y satisfies 0 = 2 - 2 * y'*y' + y*y'' + y^2.

%F The e.g.f. A(x) satisfies 0 = A(x) * A(y) * A(x-y) + A(y) * A(z) * A(y-z) - A(x) * A(z) * A(x-z) - A(x-y) * A(x-z) * A(y-z) for all x, y, z.

%F E.g.f.: Sum_{k>=0} a(k) * x^(2*k+1) / (2*k+1)! = sn(t * x, m) / t where t = sqrt( -1/2 - sqrt(1/6)), m = 5 - sqrt(24), and sn() is a Jacobi elliptic function.

%e G.f. = 1 + x + 2*x^2 + 12*x^3 + 124*x^4 + 1844*x^5 + 39288*x^6 + ...

%e E.g.f. = x + x^3/6 + x^5/60 + x^7/420 + 31*x^9/90720 + 461*x^11/9979200 + ...

%t a[ n_] := If[ n < 0, 0, With[{t = Sqrt[-1/2 - Sqrt[1/6]], m = 5 - Sqrt[24]}, SeriesCoefficient[ JacobiSN[ t x, m] / t, {x, 0, 2 n + 1}] (2 n + 1)! // Simplify]];

%o (PARI) {a(n) = my(A, c); if( n<0, 0, A = x + x^3/6 + x^5/60; for(k=3, n, A += O(x^(2*k+2)); A = x + intformal( intformal( 2*(A'^2 - 1) / A - A)); c = polcoeff( A, 2*k + 1) * k / (k-2); A = truncate( A + O(x^(2*k))) + c * x^(2*k+1)); (2*n + 1)! * polcoeff( A, 2*n + 1))};

%Y Cf. A144853, A253649.

%K nonn

%O 0,3

%A _Michael Somos_, May 02 2015