%I #18 Mar 08 2023 03:55:42
%S 3,6,9,12,18,21,24,27,30,33,36,39,42,48,49,54,60,63,66,72,75,78,81,84,
%T 90,96,99,108,114,117,120,126,132,138,144,147,150,156,162,168,180,189,
%U 192,196,198,204,210,216,222,225,227,228,234,240,243,252,264,270
%N Integer area A of triangles with side lengths in the commutative ring Z[sqrt(3)].
%C Extension of A188158 with triangles of sides in the ring Z[sqrt(3)] = {a + b sqrt(3)| a,b in Z}.
%C The numbers 3*A188158(n) are in the sequence because if the integer area of the integer-sided triangle (a, b, c) is A, the area of the triangle of sides (a*sqrt(3), b*sqrt(3), c*sqrt(3)) is 3*A. The primitive areas of the sequence are in the subsequence b(n)={3, 6, 21, 30, 33, 39, 42, 49, ...} => the numbers b(n)*3^p and b(n)*q^2 are in the sequence.
%C The squares of the sequence are 9, 36, 49, 81, 144, 196, 225, ...
%C This sequence is tested with a and b in the range [-40, ..., +40]. For the values of areas > 400 it is necessary to expand the range of variation, but nevertheless the calculations become very long.
%C The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. For the same area, the number of triangles is not unique (see the table below).
%C Geometric property of the triangles in the ring Z[sqrt(3)]:
%C It is possible to obtain integers values (or rational values) for the inradius (and/or) the circumradius of the triangles (see the table below).
%C The following table gives the first values (A, a, b, c, r, R) where A is the integer area, a,b,c are the sides in Z[sqrt(3)] and r = A/p, R = a*b*c/(4*A) are the values of the inradius and the circumradius respectively.
%C Notation in the table:
%C q=sqrt(3)and irrat. = irrational numbers of the form u+v*q.
%C +----+---------+----------+----------+-------+---------+
%C | A | a | b | c | r | R |
%C +----+---------+----------+----------+-------+---------+
%C | 3 | 3 - q | 2 + 2q | 1 + 3q | irrat.| irrat. |
%C | 3 | 3 + q | -2 + 2q | -1 + 3q | irrat.| irrat. |
%C | 6 | 3 | 4 | 5 | 1 | 5/2 |
%C | 6 | 8 | 5 - 2q | 5 + 2q | 2/3 | 13/3 |
%C | 6 | 4q | 4 - q | 4 + q | irrat.| irrat. |
%C | 6 | 8q | 7 - 2q | 7 + 2q | irrat.| irrat. |
%C | 9 | 3 + 3q | 6 - 2q | 9 - q | 1 | irrat. |
%C | 12 | 5 | 5 | 6 | 3/2 | 25/8 |
%C | 12 | 5 | 5 | 8 | 4/3 | 25/6 |
%C | 12 | 2q | -1 + 5q | 1 + 5q | irrat.| irrat. |
%C | 12 | 6 | -1 + 3q | 1 + 3q | irrat.| 13/4 |
%C | 18 | 12 | -3 + 4q | 3 + 4q | irrat.| 13/2 |
%C | 21 | 9 + q | -2 + 6q | -7 + 7q | irrat.| irrat. |
%C +----+---------+----------+----------+-------+---------+
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Ring.html">Ring</a>.
%t err=1/10^10;nn=10;q=Sqrt[3];lst={};lst1={};Do[If[u+q*v>0,lst=Union[lst,{u+q*v}]],{u,-nn,nn},{v,-nn,nn}];n1=Length[lst];Do[a=Part[lst,i];b=Part[lst,j];c=Part[lst,k];s=(a+b+c)/2;area2=s*(s-a)*(s-b)*(s-c);If[a*b*c !=0&&N[area2]>0&&Abs[N[Sqrt[area2]]-Round[N[Sqrt[area2]]]]<err,AppendTo[lst1,Round[Sqrt[N[area2]]]];Print[Round[Sqrt[N[area2]]]," ",a," ",b," ",c]],{i,1,n1},{j,i,n1},{k,j,n1}];Union[lst1]
%Y Cf. A188158, A238369.
%K nonn
%O 1,1
%A _Michel Lagneau_, May 02 2015