%I #14 Jul 25 2015 13:28:42
%S 81,121,225,441,625,729,1089,1225,1521,2025,2401,2601,3025,3249,3969,
%T 4225,4761,5625,5929,6561,7225,7569,8281,8649,9025,9801,11025,12321,
%U 13225,13689,14161,14641,15129,15625,16641,17689,18225,19881,20449,21025,21609,23409,24025,25281,25921,27225,28561
%N Odd Brazilian squares.
%C 121 is believed to be the only number of the form p^2 for prime p.
%C The previous comment conjectures the 1 and the 121 are the only difference with respect to A062532. - _R. J. Mathar_, Jul 25 2015
%o (PARI) for(n=4, 10^5, for(b=2, n-2, d=digits(n, b); if(vecmin(d)==vecmax(d)&&(n+1)%2==0&&issquare(n), print1(n, ", "); break)))
%Y Cf. A125134, A257521.
%K nonn,base
%O 1,1
%A _Derek Orr_, Apr 30 2015