Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 May 31 2015 15:09:43
%S 1,2,11,79,647,5727,53367,515802,5123303,51977485,536320688,
%T 5610909773,59379328267,634538481389,6837466955193,74210071037031,
%U 810527496757335,8901979424068377,98253966680382102,1089260346498608721,12123804391067414676,135427509933882292680,1517725698030921469890
%N G.f. satisfies: A(x) = (1 - x^3*A(x)^6) / (1 - x*A(x)^2)^2.
%C Self-convolution yields A253255.
%F G.f. A(x) satisfies:
%F (1) A(x) = exp( Sum_{n>=1} A168595(n)/2 * x^n/n ), where A168595(n) = Sum_{k=0..2*n} binomial(n,k)*trinomial(n,k).
%F (2) A(x) = sqrt( (1/x)*Series_Reversion( x*(1-x)^4/(1-x^3)^2 ) ).
%F (3) A(x) = sqrt( (1-x*A(x) - sqrt(1 - 6*x*A(x) - 3*x^2*A(x)^2)) / (2*x*(1+x*A(x))) ).
%e G.f.: A(x) = 1 + 2*x + 11*x^2 + 79*x^3 + 647*x^4 + 5727*x^5 + 53367*x^6 +...
%e where A(x) = (1 - x^3*A(x)^6) / (1 - x*A(x)^2)^2.
%e The logarithm begins:
%e log(A(x)) = 2*x + 18*x^2 + 179*x^3 + 1874*x^4 + 20202*x^5 + 221943*x^6 + 2470827*x^7/7 +...+ A168595(n)/2*x^n/n +...
%o (PARI) {a(n) = local(A=1); A = sqrt( (1/x)*serreverse( x*(1-x)^4/(1-x^3)^2 +x^2*O(x^n))); polcoeff(A,n)}
%o for(n=0,30,print1(a(n),", "))
%o (PARI) {A168595(n) = sum(k=0, 2*n, binomial(2*n, k) * polcoeff((1+x+x^2)^n, k) )}
%o {a(n) = local(A=1); A = exp( sum(k=1,n+1, A168595(k)/2 * x^k/k) +x*O(x^n)); polcoeff(A,n)}
%o for(n=0,30,print1(a(n),", "))
%Y Cf. A168595, A106228, A064641, A253255.
%K nonn
%O 0,2
%A _Paul D. Hanna_, May 31 2015