login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 4^n + 3.
8

%I #16 Nov 15 2023 13:13:44

%S 4,7,19,67,259,1027,4099,16387,65539,262147,1048579,4194307,16777219,

%T 67108867,268435459,1073741827,4294967299,17179869187,68719476739,

%U 274877906947,1099511627779,4398046511107,17592186044419,70368744177667,281474976710659

%N a(n) = 4^n + 3.

%C Subsequence of A226807.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-4).

%F G.f.: (4 - 13*x)/((1 - x)*(1 - 4*x)).

%F a(n) = 5*a(n-1) - 4*a(n-2) for n > 1.

%F From _Elmo R. Oliveira_, Nov 14 2023: (Start)

%F a(n) = 4*a(n-1) - 9 with a(0) = 4.

%F E.g.f.: exp(4*x) + 3*exp(x). (End)

%t Table[4^n + 3, {n, 0, 30}] (* or *) CoefficientList[Series[(4 - 13 x) / ((1 - x) (1 - 4 x)), {x, 0, 40}], x]

%o (Magma) [4^n+3: n in [0..30]];

%o (PARI) a(n)=4^n+3 \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Cf. A141725, A226807.

%Y Cf. Numbers of the form k^n+k-1: A000057 (k=2), A168607 (k=3), this sequence (k=4), A242329 (k=5), A253209 (k=6), A253210 (k=7), A253211 (k=8), A253212 (k=9), A253213 (k=10).

%K nonn,easy

%O 0,1

%A _Vincenzo Librandi_, Dec 29 2014