login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253150
Number of perfect matchings in the P_5 X C_{2n} graph.
3
450, 4480, 51842, 631750, 7840800, 97964230, 1227006722, 15382568320, 192913661250, 2419663276870, 30350713098272, 380707349218630, 4775477743210050, 59902315898992000, 751399441414986242, 9425367683335685830, 118229486214797575200, 1483041587095202467270, 18602909221707721745282, 233350323785397856885120
OFFSET
2,1
LINKS
H. Narumi, H. Hosoya, H. Murakami, Generalized expression for the numbers of perfect matching of cylindrical m x n graphs, J. Math. Physics, 32 (1991), 1885-1889.
Index entries for linear recurrences with constant coefficients, signature (24,-192,703,-1320,1320,-703,192,-24,1).
FORMULA
a(n) = 2*product(17-16*cos((2*j-1)*Pi/n)+2*cos(2*(2*j-1)*Pi/n),j=1..n).
a(n) = 2*(((sqrt(7)+sqrt(3))/2)^n+((sqrt(7)-sqrt(3))/2)^n)^2*(((sqrt(5)+1)/2)^n+((sqrt(5)-1)/2)^n)^2.
a(n) = 24*a(n-1)-192*a(n-2)+703*a(n-3)-1320*a(n-4)+ 1320*a(n-5)-703*a(n-6)+192*a(n-7)-24*a(n-8)+a(n-9).
G.f.: 2*x^2*(225 -3160*x +15361*x^2 -34324*x^3 +38512*x^4 -22148*x^5 +6371*x^6 -824*x^7 +35*x^8)/ ((1 -x)*(1 -5*x +x^2)*(1 -3*x +x^2)*(1 -15*x +32*x^2 -15*x^3 +x^4)).
PROG
(PARI) Vec(2*x^2*(225 -3160*x +15361*x^2 -34324*x^3 +38512*x^4 -22148*x^5 +6371*x^6 -824*x^7 +35*x^8)/ ((1 -x)*(1 -5*x +x^2)*(1 -3*x +x^2)*(1 -15*x +32*x^2 -15*x^3 +x^4)) + O(x^30)) \\ Colin Barker, May 11 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Sergey Perepechko, Dec 28 2014
STATUS
approved