login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of length n+2 0..k arrays with the sum of medians of adjacent triples multiplied by some arrangement of +-1 equal to zero
14

%I #4 Dec 27 2014 09:36:29

%S 4,7,12,10,53,16,13,152,90,40,16,345,281,393,64,19,676,673,2058,952,

%T 144,22,1197,1356,7257,6515,3323,256,25,1968,2452,19990,28428,32166,

%U 9205,544,28,3057,4083,46945,92041,184145,119317,29445,1024,31,4540,6409,98124

%N T(n,k)=Number of length n+2 0..k arrays with the sum of medians of adjacent triples multiplied by some arrangement of +-1 equal to zero

%C Table starts

%C ....4......7......10........13.........16.........19..........22...........25

%C ...12.....53.....152.......345........676.......1197........1968.........3057

%C ...16.....90.....281.......673.......1356.......2452........4083.........6409

%C ...40....393....2058......7257......19990......46945.......98124.......187593

%C ...64....952....6515.....28428......92041.....246003......570578......1191085

%C ..144...3323...32166....184145.....764836....2521335.....7036012.....17264207

%C ..256...9205..119317....866944....4373134...16987236....54817908....153203700

%C ..544..29445..517390...4737473...29088446..134079743...503679532...1613885479

%C .1024..85717.2015982..23297196..172527610..932611547..4023378619..14596031060

%C .2112.264455.8326770.120376601.1072084446.6789960255.33615995160.137794713707

%H R. H. Hardin, <a href="/A253129/b253129.txt">Table of n, a(n) for n = 1..221</a>

%F Empirical for column k:

%F k=1: a(n) = 2*a(n-1) +2*a(n-2) -4*a(n-3)

%F k=2: [order 16]

%F k=3: [order 63] for n>64

%F Empirical for row n:

%F n=1: a(n) = 3*n + 1

%F n=2: a(n) = (1/3)*n^4 + (8/3)*n^3 + (14/3)*n^2 + (10/3)*n + 1

%F n=3: a(n) = 3*a(n-1) -a(n-2) -5*a(n-3) +5*a(n-4) +a(n-5) -3*a(n-6) +a(n-7)

%F n=4: [order 15]

%F Empirical quasipolynomials for row n:

%F n=3: polynomial of degree 4 plus a quasipolynomial of degree 1 with period 2

%F n=4: polynomial of degree 6 plus a quasipolynomial of degree 3 with period 3

%e Some solutions for n=5 k=4

%e ..4....1....4....2....1....1....2....0....1....3....1....3....0....0....1....0

%e ..3....2....4....0....3....3....1....0....1....4....2....1....0....2....3....0

%e ..0....4....2....3....4....0....1....4....1....3....1....4....4....1....1....3

%e ..3....1....2....4....0....0....0....3....0....1....4....2....3....3....1....1

%e ..2....2....1....1....2....3....1....3....1....0....4....1....0....3....4....1

%e ..1....0....1....3....3....4....0....1....0....2....0....4....2....4....1....2

%e ..4....1....0....0....0....4....2....4....2....4....3....0....4....2....4....0

%Y Row 1 is A016777

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 27 2014