login
A253102
a(n) = A071053(n)^3.
2
1, 27, 27, 125, 27, 729, 125, 1331, 27, 729, 729, 3375, 125, 3375, 1331, 9261, 27, 729, 729, 3375, 729, 19683, 3375, 35937, 125, 3375, 3375, 15625, 1331, 35937, 9261, 79507, 27, 729, 729, 3375, 729, 19683, 3375, 35937, 729, 19683, 19683, 91125, 3375, 91125, 35937, 250047, 125, 3375, 3375, 15625
OFFSET
0,2
COMMENTS
Number of ON cells at n-th generation of 3-D CA defined by generalization of Rule 150, starting with a single ON cell at generation 0.
Number of odd coefficients in ((1/x+1+x)*(1/y+1+y)*(1/z+1+z))^n.
Run length transform of A253103.
LINKS
N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
MATHEMATICA
a71053[n_] := Total[CoefficientList[(x^2 + x + 1)^n, x, Modulus -> 2]];
Table[a71053[n]^3, {n, 0, 51}] (* Jean-François Alcover, Sep 15 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 20 2015
STATUS
approved