%I #7 Jun 13 2015 00:55:20
%S 1,579,1870,835278,2696899,1204470657,3888926848,1736845852476,
%T 5607829818277,2504530514800095,8086486709028946,3611531265495884874,
%U 11660708226589922215,5207825580314551188573,16814733176255958805444,7509680875282317318037752
%N Numbers n such that the sum of the hexagonal numbers X(n) and X(n+1) is equal to the heptagonal number H(m) for some m.
%C Also positive integers x in the solutions to 8*x^2-5*y^2+4*x+3*y+2 = 0, the corresponding values of y being A252986.
%H Colin Barker, <a href="/A252985/b252985.txt">Table of n, a(n) for n = 1..633</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1442,-1442,-1,1).
%F a(n) = a(n-1)+1442*a(n-2)-1442*a(n-3)-a(n-4)+a(n-5).
%F G.f.: x*(68*x^3+151*x^2-578*x-1) / ((x-1)*(x^2-38*x+1)*(x^2+38*x+1)).
%e 1 is in the sequence because X(1)+X(2) = 1+6 = 7 = H(2).
%o (PARI) Vec(x*(68*x^3+151*x^2-578*x-1)/((x-1)*(x^2-38*x+1)*(x^2+38*x+1)) + O(x^100))
%Y Cf. A000384, A000566, A252986.
%K nonn,easy
%O 1,2
%A _Colin Barker_, Dec 25 2014