login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = Number of n X k nonnegative integer arrays with upper left 0 and lower right n+k-6 and value increasing by 0 or 1 with every step right or down.
10

%I #11 Nov 25 2015 04:35:11

%S 0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,5,19,33,33,19,5,15,120,413,615,413,120,

%T 15,35,483,2859,6997,6997,2859,483,35,70,1500,13976,53950,84910,53950,

%U 13976,1500,70,126,3923,54199,315198,762227,762227,315198,54199,3923,126,210

%N T(n,k) = Number of n X k nonnegative integer arrays with upper left 0 and lower right n+k-6 and value increasing by 0 or 1 with every step right or down.

%C Table starts

%C ...0....0......0........0.........1...........5...........15............35

%C ...0....0......0........1........19.........120..........483..........1500

%C ...0....0......1.......33.......413........2859........13976.........54199

%C ...0....1.....33......615......6997.......53950.......315198.......1499394

%C ...1...19....413.....6997.....84910......762227......5385305......31454256

%C ...5..120...2859....53950....762227.....8241540.....71297441.....512868867

%C ..15..483..13976...315198...5385305....71297441....759337545....6725497344

%C ..35.1500..54199..1499394..31454256...512868867...6725497344...73117894428

%C ..70.3923.177848..6083808.157376166..3160111147..50869309436..675539536773

%C .126.9069.513905.21733215.692347393.17063990547.335549742230.5411459549576

%H R. H. Hardin, <a href="/A252930/b252930.txt">Table of n, a(n) for n = 1..449</a>

%H R. J. Mathar, <a href="http://vixra.org/abs/1511.0225">Counting 2-way monotonic terrace forms over rectangular landscapes</a>, vixra 1511.0225 (2015)

%F Empirical for column k:

%F k=1: a(n) = (1/24)*n^4 - (5/12)*n^3 + (35/24)*n^2 - (25/12)*n + 1.

%F k=2: [polynomial of degree 8]

%F k=3: [polynomial of degree 12]

%F k=4: [polynomial of degree 16]

%F k=5: [polynomial of degree 20]

%F k=6: [polynomial of degree 24]

%F k=7: [polynomial of degree 28]

%F Empirical: with "n+k-3" instead of "n+k-6" T(n,k) = binomial(n+k,k) - 2.

%e Some solutions for n=4, k=4:

%e ..0..1..1..1....0..0..0..0....0..0..0..0....0..1..1..2....0..0..0..1

%e ..1..1..1..1....1..1..1..1....0..0..0..1....1..1..2..2....0..1..1..2

%e ..1..1..2..2....1..1..1..1....1..1..1..1....1..1..2..2....0..1..1..2

%e ..1..2..2..2....1..1..1..2....1..2..2..2....1..2..2..2....1..2..2..2

%Y Column 1 is A000332(n-1), other columns are A252924 - A252929. Cf. A252923 (diagonal); A252876 (lower right n+k-4), A252976 (lower right n+k-5).

%K nonn,tabl

%O 1,16

%A _R. H. Hardin_, Dec 24 2014