login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (4+2)X(n+2) 0..3 arrays with every consecutive three elements in every row having 2 or 3 distinct values, in every column 1 or 2 distinct values, in every diagonal 2 distinct values, and in every antidiagonal 2 distinct values, and new values 0 upwards introduced in row major order
1

%I #4 Dec 24 2014 17:12:12

%S 258746,3590945,54457598,899378367,16084394412,280079543014,

%T 4917133211603,88400589505093,1559068278259511,27650186219325071,

%U 494188223889426223,8760232221387520144,155647635491709722213

%N Number of (4+2)X(n+2) 0..3 arrays with every consecutive three elements in every row having 2 or 3 distinct values, in every column 1 or 2 distinct values, in every diagonal 2 distinct values, and in every antidiagonal 2 distinct values, and new values 0 upwards introduced in row major order

%C Row 4 of A252917

%H R. H. Hardin, <a href="/A252921/b252921.txt">Table of n, a(n) for n = 1..15</a>

%e Some solutions for n=1

%e ..0..0..1....0..1..2....0..0..1....0..1..0....0..1..2....0..0..1....0..1..2

%e ..1..0..2....1..1..0....0..0..2....0..1..2....1..1..0....0..0..1....0..0..2

%e ..0..0..2....1..1..0....0..0..2....0..2..0....1..1..0....0..1..2....2..0..3

%e ..0..2..0....1..0..0....0..0..2....1..2..0....1..0..3....2..1..1....0..0..2

%e ..1..0..0....3..0..1....0..2..1....0..1..0....1..1..0....2..1..1....0..0..2

%e ..1..0..2....1..1..0....1..2..2....1..2..2....1..0..3....0..3..1....2..3..1

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 24 2014