login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A252862 Initial members of prime sextuples (n, n+2, n+6, n+8, n+18, n+20). 1
11, 18041, 97841, 165701, 392261, 663581, 1002341, 1068701, 1155611, 1329701, 1592861, 1678751, 1718861, 1748471, 2159231, 2168651, 2177501, 2458661, 2596661, 3215741, 3295541, 3416051, 3919241, 4353311, 5168921, 5201291, 5205461, 6404771 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

This sequence is prime n, where there exist three twin prime pairs of (n,n+2), (n+6,n+8) and (n+18,n+20).

This is a subsequence of A132232 (Primes congruent to 11 mod 30 ).

Also, this is a subsequence of A128467 (30k+11).

LINKS

Karl V. Keller, Jr., Table of n, a(n) for n = 1..10000

Eric Weisstein's World of Mathematics, Twin Primes

Wikipedia, Twin prime

EXAMPLE

For n = 18041, the numbers, 18041, 18043, 18047, 18049, 18059, 18061, are primes.

MATHEMATICA

Select[Prime[Range[2500]], Union[PrimeQ[{#, # + 2, # + 6, # + 8, # + 18, # + 20}]] = {True} &] (* Alonso del Arte, Dec 23 2014 *)

PROG

(Python)

from sympy import isprime

for n in range(1, 10000001, 2):

..if isprime(n) and isprime(n+2) and isprime(n+6) and isprime(n+8) and isprime(n+18) and isprime(n+20): print(n, end=', ')

(PARI) forprime(p=1, 10^7, if(isprime(p+2) && isprime(p+6) && isprime(p+8) && isprime(p+18) && isprime(p+20), print1(p, ", "))) \\ Derek Orr, Dec 31 2014

CROSSREFS

Cf. A077800 (twin primes), A030430 (primes,10*n+1), A132232, A128467, A172456.

Sequence in context: A068647 A199148 A248732 * A232066 A330301 A264917

Adjacent sequences: A252859 A252860 A252861 * A252863 A252864 A252865

KEYWORD

nonn

AUTHOR

Karl V. Keller, Jr., Dec 23 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 08:35 EST 2022. Contains 358515 sequences. (Running on oeis4.)