The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A252733 Smallest number k such that (k^2)*2^(2*n+1)-1 is a prime number. 2
 2, 1, 1, 1, 4, 2, 1, 2, 1, 1, 3, 5, 8, 4, 2, 1, 7, 5, 10, 5, 6, 3, 19, 71, 46, 23, 14, 7, 4, 2, 1, 3, 15, 13, 38, 19, 10, 5, 28, 14, 7, 8, 4, 2, 1, 11, 14, 7, 6, 3, 8, 4, 2, 1, 3, 54, 27, 17, 11, 16, 8, 4, 2, 1, 38, 19, 52, 26, 13, 15, 11 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS If k=1 then 2*n+1 is a Mersenne exponent. LINKS Pierre CAMI, Table of n, a(n) for n = 0..2500 EXAMPLE 2*2^1-1=3 prime so a(0)=2. 1*2^3-1=7 prime so a(1)=1. 1*2^5-1=31 prime so a(2)=1. MATHEMATICA Table[k=1; While[Not[PrimeQ[k^2*2^(2*n+1)-1]], k++]; k, {n, 0, 100}] (* Vaclav Kotesovec, Dec 21 2014 *) PROG (PFGW & SCRIPT) SCRIPT DIM n, 0 DIM k OPENFILEOUT myf, a(n).txt LABEL loop1 SET n, n+1 SET k, 0 LABEL loop2 SET k, k+1 PRP k^2*2^(2*n+1)-1 IF ISPRP THEN GOTO a GOTO loop2 LABEL a WRITE myf, k GOTO loop1 CROSSREFS Sequence in context: A297404 A235388 A294897 * A181876 A131505 A100092 Adjacent sequences:  A252730 A252731 A252732 * A252734 A252735 A252736 KEYWORD nonn AUTHOR Pierre CAMI, Dec 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 22:46 EDT 2021. Contains 347651 sequences. (Running on oeis4.)