Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jun 13 2015 00:55:20
%S 4,257,1772,123729,853956,59636977,411604876,28744899041,198392696132,
%T 13854981700641,95624867930604,6678072434809777,46090987949854852,
%U 3218817058596611729,22215760566962107916,1551463144171132043457,10707950502287786160516
%N Numbers n such that the heptagonal number H(n) is equal to the sum of the pentagonal numbers P(m) and P(m+1) for some m.
%C Also positive integers y in the solutions to 6*x^2-5*y^2+4*x+3*y+2 = 0, the corresponding values of x being A252585.
%H Colin Barker, <a href="/A252586/b252586.txt">Table of n, a(n) for n = 1..745</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,482,-482,-1,1).
%F a(n) = a(n-1)+482*a(n-2)-482*a(n-3)-a(n-4)+a(n-5).
%F G.f.: -x*(x^4+11*x^3-413*x^2+253*x+4) / ((x-1)*(x^2-22*x+1)*(x^2+22*x+1)).
%e 4 is in the sequence because H(4) = 23 = 12+22 = P(3)+P(4).
%o (PARI) Vec(-x*(x^4+11*x^3-413*x^2+253*x+4)/((x-1)*(x^2-22*x+1)*(x^2+22*x+1)) + O(x^100))
%Y Cf. A000326, A000566, A252585.
%K nonn,easy
%O 1,1
%A _Colin Barker_, Dec 18 2014