%I #4 Dec 18 2014 09:44:54
%S 771,747,832,1265,2162,3761,6855,12549,22875,42485,78560,144498,
%T 269219,498958,919276,1712966,3176920,5855198,10905899,20234030,
%U 37296589,69433853,128861740,237545254,442015759,820561452,1512757602,2813618655
%N Number of (n+2)X(1+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 1 2 4 6 or 7 and every 3X3 column and antidiagonal sum not equal to 1 2 4 6 or 7
%C Column 1 of A252558
%H R. H. Hardin, <a href="/A252551/b252551.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 26*a(n-3) -280*a(n-6) +1644*a(n-9) -5901*a(n-12) +13891*a(n-15) +9*a(n-16) -22285*a(n-18) -87*a(n-19) +24609*a(n-21) +235*a(n-22) -18285*a(n-24) -174*a(n-25) +8465*a(n-27) -229*a(n-28) -2074*a(n-30) +496*a(n-31) +616*a(n-33) -313*a(n-34) -1069*a(n-36) +38*a(n-37) +983*a(n-39) +40*a(n-40) -355*a(n-42) -17*a(n-43) -37*a(n-45) +2*a(n-46) +72*a(n-48) -21*a(n-51) +2*a(n-54) for n>60
%e Some solutions for n=4
%e ..2..3..2....3..2..2....0..1..3....1..3..3....0..1..0....2..2..0....1..2..1
%e ..1..1..0....3..1..0....2..2..3....2..0..2....2..2..3....1..3..3....0..0..1
%e ..0..1..3....2..2..3....3..2..2....2..2..3....3..2..2....2..3..2....2..1..1
%e ..2..3..2....3..2..2....0..1..3....1..3..3....0..1..3....2..2..0....1..2..1
%e ..3..1..3....3..1..3....0..2..0....2..0..2....0..2..0....1..3..3....2..2..3
%e ..0..1..3....2..2..0....0..0..2....0..2..0....3..2..2....0..0..2....0..1..1
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 18 2014