login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (6+2) X (n+2) 0..3 arrays with every 3 X 3 subblock row and diagonal sum equal to 0 2 3 6 or 7 and every 3 X 3 column and antidiagonal sum not equal to 0 2 3 6 or 7.
1

%I #7 Dec 04 2018 14:37:24

%S 649,964,1748,2504,7136,13184,19232,54656,102272,150656,427520,805376,

%T 1192448,3381248,6391808,9488384,26894336,50929664,75702272,214532096,

%U 406618112,604798976,1713766400,3249668096,4835115008,13700169728

%N Number of (6+2) X (n+2) 0..3 arrays with every 3 X 3 subblock row and diagonal sum equal to 0 2 3 6 or 7 and every 3 X 3 column and antidiagonal sum not equal to 0 2 3 6 or 7.

%H R. H. Hardin, <a href="/A252538/b252538.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 12*a(n-3) - 32*a(n-6) for n>8.

%F Empirical g.f.: x*(649 + 964*x + 1748*x^2 - 5284*x^3 - 4432*x^4 - 7792*x^5 + 9952*x^6 - 128*x^7) / ((1 - 2*x)*(1 + 2*x + 4*x^2)*(1 - 4*x^3)). - _Colin Barker_, Dec 04 2018

%e Some solutions for n=4:

%e ..3..1..3..3..1..3....0..0..2..0..0..2....1..3..3..0..3..3....1..0..1..1..0..1

%e ..2..2..3..2..2..3....0..1..1..0..1..1....2..3..2..2..3..2....0..0..3..0..0..2

%e ..3..2..2..3..2..2....1..0..1..1..0..1....2..2..3..2..2..3....0..1..1..0..1..1

%e ..3..1..3..3..1..3....0..0..3..0..0..3....1..3..3..0..3..3....1..0..1..1..0..1

%e ..2..2..3..2..2..3....0..1..1..0..1..1....2..3..2..2..3..2....0..0..2..0..0..3

%e ..3..2..2..3..2..2....1..0..1..1..0..1....2..2..3..2..2..3....0..1..1..0..1..1

%e ..0..0..3..3..1..3....3..0..3..0..0..2....0..3..3..1..3..3....1..0..1..1..0..1

%e ..2..2..3..2..2..3....0..1..1..0..1..2....2..3..2..2..3..2....3..0..3..0..0..3

%Y Row 6 of A252532.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 18 2014