login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252516
Number of (n+2) X (1+2) 0..3 arrays with every 3 X 3 subblock row and column sum not equal to 0 2 4 6 or 7 and every 3 X 3 diagonal and antidiagonal sum equal to 0 2 4 6 or 7.
1
806, 791, 475, 660, 1093, 1471, 2176, 3809, 6101, 9098, 16197, 27215, 40668, 72707, 123525, 184674, 330481, 562847, 841564, 1506331, 2566837, 3838002, 6870033, 11708143, 17506412, 31336843, 53406693, 79855586, 142943489, 243616831
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 6*a(n-3) - 7*a(n-6) + 2*a(n-9) for n>14.
Empirical g.f.: x*(806 + 791*x + 475*x^2 - 4176*x^3 - 3653*x^4 - 1379*x^5 + 3858*x^6 + 2788*x^7 + 600*x^8 - 950*x^9 - 588*x^10 - 44*x^11 - 8*x^12 + 2*x^13) / ((1 - x)*(1 + x + x^2)*(1 - 5*x^3 + 2*x^6)). - Colin Barker, Dec 03 2018
EXAMPLE
Some solutions for n=4:
..2..1..2....1..1..1....0..2..3....3..2..0....0..3..2....0..0..3....1..1..1
..3..2..0....2..1..0....2..1..2....0..2..3....3..3..2....1..2..2....0..1..2
..3..2..3....2..1..2....3..2..3....2..1..2....2..2..1....2..3..0....2..1..2
..2..1..2....1..3..1....3..2..3....3..2..3....3..3..2....2..3..3....1..3..1
..0..2..3....2..1..2....2..1..2....3..2..0....0..3..2....1..2..2....2..1..2
..3..2..3....2..1..2....0..0..3....2..1..2....2..2..1....2..0..3....2..1..0
CROSSREFS
Column 1 of A252523.
Sequence in context: A267979 A249877 A252515 * A252523 A243858 A252682
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 18 2014
STATUS
approved