login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 3 5 6 or 8
9

%I #4 Dec 17 2014 15:32:17

%S 570,716,716,1299,682,1299,2380,813,813,2380,4507,1463,1741,1463,4507,

%T 8624,3497,5367,5367,3497,8624,17061,9056,18175,22832,18175,9056,

%U 17061,34876,24331,62391,96543,96543,62391,24331,34876,71785,66366,213791

%N T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 3 5 6 or 8

%C Table starts

%C ....570....716....1299......2380.......4507........8624........17061

%C ....716....682.....813......1463.......3497........9056........24331

%C ...1299....813....1741......5367......18175.......62391.......213791

%C ...2380...1463....5367.....22832......96543......409090......1741406

%C ...4507...3497...18175.....96543.....504030.....2670237.....14105131

%C ...8624...9056...62391....409090....2670237....17562191....115183323

%C ..17061..24331..213791...1741406...14105131...115183323....937980722

%C ..34876..66366..735125...7424273...74389293...755607698...7634089567

%C ..71785.182232.2535533..31630086..393421203..4967204849..62282795777

%C .147822.501727.8732005.134638315.2079994072.32613906966.507708323820

%H R. H. Hardin, <a href="/A252473/b252473.txt">Table of n, a(n) for n = 1..420</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 46] for n>55

%F k=2: [order 16] for n>21

%F k=3: [order 19] for n>24

%F k=4: [order 24] for n>28

%F k=5: [order 44] for n>47

%F k=6: [order 72] for n>75

%e Some solutions for n=4 k=4

%e ..3..3..3..1..3..3....1..3..3..1..3..3....3..1..3..3..3..3....3..3..3..3..1..3

%e ..3..3..3..3..3..3....3..3..3..3..3..3....1..3..3..3..3..1....3..3..3..3..3..1

%e ..3..3..3..3..3..3....3..3..3..3..1..3....3..3..1..3..3..3....1..3..3..3..3..3

%e ..3..1..3..3..3..1....3..3..3..3..3..3....3..3..3..3..1..3....3..3..3..3..1..3

%e ..3..3..3..1..3..3....3..3..3..1..3..3....3..3..3..3..3..3....3..3..3..3..3..3

%e ..1..3..3..3..3..3....1..3..3..3..3..3....1..3..3..3..3..1....3..3..3..3..3..3

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 17 2014