%I #4 Dec 17 2014 10:59:12
%S 1603,6164,24024,53028,284379,1190037,2718502,14673858,60822070,
%T 140120224,759992540,3151322013,7307890607,39819735578,165035172520,
%U 384707477228,2103912540224,8717078161415,20403395380987,111904137843930
%N Number of (6+2)X(n+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 0 2 4 6 or 7 and every 3X3 column and antidiagonal sum not equal to 0 2 4 6 or 7
%C Row 6 of A252433
%H R. H. Hardin, <a href="/A252439/b252439.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 95*a(n-3) -2139*a(n-6) -7409*a(n-9) +194956*a(n-12) +60848*a(n-15) -7025702*a(n-18) +7788378*a(n-21) +119742541*a(n-24) -273713371*a(n-27) -671051999*a(n-30) +2708582795*a(n-33) -2329474380*a(n-36) -526768608*a(n-39) +1416261076*a(n-42) -328618104*a(n-45) -188072944*a(n-48) +71753184*a(n-51) +2455488*a(n-54) -2353536*a(n-57) +248832*a(n-60) for n>67
%e Some solutions for n=4
%e ..0..2..2..3..2..2....2..2..3..2..2..0....0..3..1..0..3..1....3..2..2..0..2..2
%e ..3..1..0..3..1..0....1..3..3..1..3..3....3..2..2..3..2..2....3..1..3..3..1..0
%e ..2..2..3..2..2..3....2..3..2..2..3..2....2..3..2..2..3..2....2..2..3..2..2..3
%e ..3..2..2..3..2..2....2..2..0..2..2..3....3..3..1..3..3..1....3..2..2..3..2..2
%e ..3..1..0..3..1..3....1..3..3..1..3..0....3..2..2..3..2..2....0..1..3..0..1..3
%e ..2..2..3..2..2..0....2..3..2..2..3..2....2..0..2..2..3..2....2..2..3..2..2..3
%e ..3..2..2..0..2..2....2..2..3..2..2..3....3..3..1..0..3..1....3..2..2..3..2..2
%e ..0..1..3..3..1..3....1..0..3..1..3..3....3..2..2..3..2..2....3..1..3..3..1..3
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 17 2014