login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+2)X(4+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 0 2 4 6 or 7 and every 3X3 column and antidiagonal sum not equal to 0 2 4 6 or 7
1

%I #4 Dec 17 2014 10:50:28

%S 1693,1488,2971,7575,20187,53028,139425,374789,987296,2598603,6980876,

%T 18418693,48445791,130135991,343594820,903608172,2427038718,

%U 6410968020,16858590226,45274217595,119646835494,314596556735,844728863140

%N Number of (n+2)X(4+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 0 2 4 6 or 7 and every 3X3 column and antidiagonal sum not equal to 0 2 4 6 or 7

%C Column 4 of A252433

%H R. H. Hardin, <a href="/A252429/b252429.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 43*a(n-3) -607*a(n-6) +3969*a(n-9) -25465*a(n-12) +104694*a(n-15) -390554*a(n-18) +1065198*a(n-21) -2336824*a(n-24) +3653382*a(n-27) -2758779*a(n-30) +95370*a(n-33) +1117676*a(n-36) -418109*a(n-39) -95329*a(n-42) -78740*a(n-45) +37358*a(n-48) +22825*a(n-51) -9860*a(n-54) +9262*a(n-57) +4266*a(n-60) +111*a(n-63) +92*a(n-66) +21*a(n-69) +a(n-72) for n>74

%e Some solutions for n=4

%e ..2..2..3..2..2..0....2..2..3..2..2..0....3..2..2..0..2..0....2..2..3..2..2..3

%e ..3..2..2..0..2..2....1..3..0..1..3..3....3..1..3..3..1..0....3..2..2..3..2..2

%e ..3..1..3..3..1..3....2..3..2..2..3..2....2..2..3..2..2..3....3..1..3..3..1..3

%e ..2..2..3..2..2..3....2..2..3..2..2..0....0..2..2..3..2..2....2..2..3..2..2..3

%e ..3..2..2..0..2..2....1..0..3..1..3..3....3..1..3..0..1..3....3..2..2..3..2..2

%e ..0..1..3..3..1..0....2..3..2..2..3..2....2..2..3..2..2..0....3..1..3..3..1..0

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 17 2014