Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Dec 17 2014 09:56:28
%S 458,661,293,983,442,319,1551,774,688,426,2689,1157,1515,1224,631,
%T 4582,2489,2555,3302,2414,964,7662,5060,7425,6231,8346,5061,1529,
%U 13777,8307,18377,21819,16906,20998,10129,2517,24375,19629,32710,63428,73925,44456
%N T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 2 3 4 6 or 7 and every 3X3 column and antidiagonal sum not equal to 2 3 4 6 or 7
%C Table starts
%C ..458...661....983....1551.....2689......4582......7662......13777.......24375
%C ..293...442....774....1157.....2489......5060......8307......19629.......41216
%C ..319...688...1515....2555.....7425.....18377.....32710......97923......245711
%C ..426..1224...3302....6231....21819.....63428....122653.....433272.....1264088
%C ..631..2414...8346...16906....73925....267113....551827....2435059.....8866727
%C ..964..5061..20998...44456...249530...1068295...2289969...12895653....55487440
%C .1529.10129..50675..113146...762761...3896844...8765249...58862703...301012112
%C .2517.21427.133296..311214..2632409..16806104..39649367..335814585..2161683081
%C .4097.46070.343447..819606..8914507..68150374.163860739.1780727737.13694498100
%C .6733.93671.848007.2086566.27372795.253409613.627061685.8161047651.75692321760
%H R. H. Hardin, <a href="/A252407/b252407.txt">Table of n, a(n) for n = 1..544</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 24] for n>28
%F k=2: [order 27] for n>31
%F k=3: [order 45] for n>48
%F k=4: [order 66] for n>69
%F k=5: [order 84] for n>87
%F Empirical for row n:
%F n=1: [linear recurrence of order 79] for n>86
%F n=2: [order 21] for n>26
%F n=3: [order 30] for n>37
%F n=4: [order 39] for n>41
%F n=5: [order 54] for n>55
%F n=6: [order 60] for n>63
%F n=7: [order 90] for n>91
%e Some solutions for n=4 k=4
%e ..2..3..2..2..0..2....2..2..0..2..2..0....2..2..3..2..2..0....2..3..2..2..0..2
%e ..3..3..1..3..3..1....1..3..3..1..3..3....3..2..2..3..2..2....0..3..1..3..3..1
%e ..3..2..2..3..2..2....2..0..2..2..3..2....0..1..3..3..1..3....3..2..2..3..2..2
%e ..2..0..2..2..3..2....2..2..3..2..2..0....2..2..3..2..2..0....2..3..2..2..0..2
%e ..3..3..1..3..0..1....1..3..0..1..3..3....3..2..2..3..2..2....0..3..1..3..3..1
%e ..0..2..2..3..2..2....2..3..2..2..0..2....3..1..0..3..1..3....3..2..2..0..2..2
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 17 2014