login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252391
Number of (7+2) X (n+2) 0..3 arrays with every 3 X 3 subblock row and diagonal sum equal to 0 3 5 6 or 7 and every 3 X 3 column and antidiagonal sum not equal to 0 3 5 6 or 7.
1
1051, 903, 1114, 1361, 2031, 2778, 3495, 5195, 7123, 9045, 13466, 18506, 23568, 35117, 48310, 61587, 91799, 126339, 161121, 240194, 330622, 421704, 628697, 865442, 1103919, 1645811, 2265619, 2889981, 4308650, 5931330, 7565952, 11280053
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-3) - 4*a(n-6) + a(n-9) for n>14.
Empirical g.f.: x*(1051 + 903*x + 1114*x^2 - 2843*x^3 - 1581*x^4 - 1678*x^5 + 2255*x^6 + 683*x^7 + 467*x^8 - 542*x^9 - 93*x^10 + 12*x^11 + 7*x^12 + 2*x^13) / ((1 - x)*(1 + x + x^2)*(1 - 3*x^3 + x^6)). - Colin Barker, Dec 03 2018
EXAMPLE
Some solutions for n=4:
..2..1..0..2..1..0....3..1..2..0..1..2....3..2..1..3..2..1....3..0..0..0..0..3
..0..0..0..0..0..0....1..0..2..1..0..2....0..0..3..0..0..0....1..2..0..1..2..0
..2..0..1..2..0..1....0..0..0..0..0..0....1..2..0..1..2..0....0..2..1..3..2..1
..2..1..0..2..1..0....0..1..2..0..1..2....3..2..1..0..2..1....0..0..3..0..0..3
..0..0..0..0..0..3....1..0..2..1..3..2....0..0..0..0..0..0....1..2..0..1..2..0
..2..0..1..2..3..1....0..0..0..3..0..0....1..2..0..1..2..0....3..2..1..3..2..1
..2..1..0..2..1..0....0..1..2..0..1..2....0..2..1..0..2..1....0..0..3..0..0..3
..0..0..3..0..0..0....1..3..2..1..3..2....0..0..0..0..0..0....1..2..0..1..2..0
..2..3..1..2..0..1....3..0..0..3..0..0....1..2..0..1..2..3....3..2..1..3..2..1
CROSSREFS
Row 7 of A252384.
Sequence in context: A090057 A287173 A204753 * A020389 A252609 A185680
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 17 2014
STATUS
approved