login
Number of (n+2)X(4+2) 0..3 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 1 3 4 6 or 7
1

%I #4 Dec 17 2014 08:09:52

%S 658,2338,10450,45516,192946,818040,3482672,14848406,63260032,

%T 269276490,1146479186,4882764600,20793914762,88545635100,377056380768,

%U 1605668962346,6837603120792,29117161531894,123992231041454

%N Number of (n+2)X(4+2) 0..3 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 1 3 4 6 or 7

%C Column 4 of A252369

%H R. H. Hardin, <a href="/A252365/b252365.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) +6*a(n-2) +20*a(n-3) +54*a(n-4) +38*a(n-5) -41*a(n-6) -191*a(n-7) -285*a(n-8) +296*a(n-9) +753*a(n-10) -160*a(n-11) -791*a(n-12) -99*a(n-13) +334*a(n-14) +98*a(n-15) -18*a(n-16) +54*a(n-17) -3*a(n-18) -35*a(n-19) +3*a(n-20) -12*a(n-21) -7*a(n-22) +4*a(n-23) for n>25

%e Some solutions for n=4

%e ..2..0..0..2..0..0....2..0..0..0..2..0....0..0..0..0..0..2....0..0..0..2..0..0

%e ..0..0..0..0..0..0....0..0..2..0..0..0....0..0..2..0..0..0....0..0..0..0..0..2

%e ..0..0..0..0..0..0....0..0..0..0..0..2....0..0..0..0..0..0....0..0..0..0..0..0

%e ..0..0..2..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..2..0..0..0

%e ..2..0..0..0..0..0....0..2..0..0..0..0....0..0..0..0..0..2....2..0..0..0..2..0

%e ..0..2..0..0..0..0....0..0..0..0..2..0....0..0..0..0..2..0....0..0..0..0..0..0

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 17 2014