login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A252296 Fibonacci numbers k for which the difference between k and the largest prime less than k is also prime. 0
5, 13, 21, 34, 55, 144, 610, 2584, 6765, 10946, 46368, 196418, 832040, 14930352, 267914296, 1134903170, 4807526976, 365435296162, 1548008755920, 117669030460994, 498454011879264, 2111485077978050, 160500643816367088, 12200160415121876738, 51680708854858323072 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) - p = q, where a(n) is a Fibonacci number, p is the largest prime less than a(n), and q is also prime.

The only terms that are primes are 5 and 13, since there are no other Fibonacci numbers that are twin primes: see the MacKinnon and Gagola link. - Robert Israel, Jan 13 2015

LINKS

Table of n, a(n) for n=1..25.

N. MacKinnon and S. M. Gagola, Jr., Fibonacci twin primes (solution to problem 10844), American Mathematical Monthly 109, No. 1 (Jan., 2002), 78.

EXAMPLE

For n = 1: a(1) = 5, 5 - 3 = 2.

For n = 4: a(4) = 34, 34 - 31 = 3.

For n = 7: a(7) = 610, 610 - 607 = 3.

For n = 11: a(11) = 46368, 46368 - 46351 = 17.

MAPLE

select(t -> isprime(t - prevprime(t)), [seq(combinat:-fibonacci(n), n=4..1000)]); # Robert Israel, Dec 16 2014

MATHEMATICA

Select[ Fibonacci@ Range[4, 100], PrimeQ[# - NextPrime[#, -1]] &]

PROG

(PARI) for(n=1, 100, f=fibonacci(n); if(f>2&&isprime(f-precprime(f-1)), print1(f, ", "))) \\ Derek Orr, Dec 30 2014

CROSSREFS

Cf. A180422, A000045.

Sequence in context: A299770 A294962 A316357 * A273569 A273750 A191116

Adjacent sequences:  A252293 A252294 A252295 * A252297 A252298 A252299

KEYWORD

nonn,easy

AUTHOR

Carlos Eduardo Olivieri, Dec 16 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 23:43 EDT 2022. Contains 356951 sequences. (Running on oeis4.)