OFFSET
1,1
COMMENTS
a(n) - p = q, where a(n) is a Fibonacci number, p is the largest prime less than a(n), and q is also prime.
The only terms that are primes are 5 and 13, since there are no other Fibonacci numbers that are twin primes: see the MacKinnon and Gagola link. - Robert Israel, Jan 13 2015
LINKS
N. MacKinnon and S. M. Gagola, Jr., Fibonacci twin primes (solution to problem 10844), American Mathematical Monthly 109, No. 1 (Jan., 2002), 78.
EXAMPLE
For n = 1: a(1) = 5, 5 - 3 = 2.
For n = 4: a(4) = 34, 34 - 31 = 3.
For n = 7: a(7) = 610, 610 - 607 = 3.
For n = 11: a(11) = 46368, 46368 - 46351 = 17.
MAPLE
select(t -> isprime(t - prevprime(t)), [seq(combinat:-fibonacci(n), n=4..1000)]); # Robert Israel, Dec 16 2014
MATHEMATICA
Select[ Fibonacci@ Range[4, 100], PrimeQ[# - NextPrime[#, -1]] &]
PROG
(PARI) for(n=1, 100, f=fibonacci(n); if(f>2&&isprime(f-precprime(f-1)), print1(f, ", "))) \\ Derek Orr, Dec 30 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Carlos Eduardo Olivieri, Dec 16 2014
STATUS
approved