login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252281
For a prime p, denote by s(p,k) the odd part of the digital sum of p^k. Let k_1 be the smallest k such that s(p,k) is divisible by 11. Sequence lists primes p for which s(p,k_1)=11.
8
2, 5, 7, 13, 23, 29, 31, 43, 47, 53, 59, 79, 83, 97, 137, 139, 173, 191, 227, 239, 241, 257, 263, 281, 317, 331, 337, 349, 353, 359, 373, 383, 421, 439, 443, 449, 461, 463, 467, 479, 499, 509, 523, 547, 557, 563, 569, 593, 599, 607, 619, 641, 643, 653, 659
OFFSET
1,1
COMMENTS
For s(p,k_1)=5 and s(p,k_1)=7 see A251964 and A252280 respectively.
MATHEMATICA
s[p_, k_] := Module[{s = Total[IntegerDigits[p^k]]}, s/2^IntegerExponent[s, 2]]; f11[p_] := Module[{k = 1}, While[! Divisible[s[p, k], 11], k++]; k]; ok11Q[p_] := s[p, f11[p]] == 11; Select[Range[1000], PrimeQ[#] && ok11Q[#] &] (* Amiram Eldar, Dec 07 2018 *)
PROG
(PARI) s(p, k) = my(s=sumdigits(p^k)); s >> valuation(s, 2);
f11(p) = my(k=1); while(s(p, k) % 11, k++); k;
isok11(p) = s(p, f11(p)) == 11;
lista11(nn) = forprime(p=2, nn, if (isok11(p), print1(p, ", "))); \\ Michel Marcus, Dec 07 2018
CROSSREFS
KEYWORD
nonn,base
AUTHOR
STATUS
approved