login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of zeta''(1/2) (negated).
2

%I #9 Mar 19 2024 06:25:34

%S 1,6,0,0,8,3,5,7,0,1,3,9,2,8,6,6,1,4,2,2,6,9,1,3,0,6,5,0,5,9,4,4,9,6,

%T 2,7,8,5,1,8,5,5,9,3,6,1,9,6,3,6,3,5,4,5,3,5,3,0,9,2,9,5,7,5,3,6,6,7,

%U 8,0,9,2,4,6,0,1,4,4,9,8,0,1,3,3,8,0,6,8,0,6,2,7,6,3,5,6,3,8,8,5,5,4,8,4,9

%N Decimal expansion of zeta''(1/2) (negated).

%H MathOverflow, <a href="http://mathoverflow.net/questions/129706">Zeta(3) in terms of derivatives of zeta at 1/2 and pi</a>

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/RiemannZetaFunction.html">Riemann Zeta Function</a>

%H <a href="/wiki/Index_to_constants#Start_of_section_Z">Index entries for constants related to zeta</a>

%F zeta(3) = (1/7)*(-Pi^3/4 + (2*zeta'(1/2)^3 - 3*zeta(1/2)*zeta'(1/2)*zeta''(1/2) + zeta(1/2)^2*zeta'''(1/2))/zeta(1/2)^3).

%e -16.0083570139286614226913065059449627851855936196363545353...

%p Zeta(2,1/2) ; evalf(%) ;

%t RealDigits[Zeta''[1/2], 10, 105] // First

%Y Cf. A002117, A059750, A114875, A252245.

%K nonn,cons,easy

%O 2,2

%A _Jean-François Alcover_, Dec 16 2014