login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A252225
Number of (n+2) X (5+2) 0..2 arrays with every 3 X 3 subblock row and column sum 2 3 or 4 and every diagonal and antidiagonal sum not 2 3 or 4.
1
2458, 22256, 73826, 160688, 412514, 1339010, 4297634, 13186856, 40282992, 123998850, 382415504, 1178020562, 3627007218, 11168774306, 34396342056, 105928920848, 326217328994, 1004613387440, 3093802840514, 9527668767266
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - a(n-2) + 3*a(n-3) + 3*a(n-4) - a(n-5) - a(n-6) for n>8.
Empirical g.f.: 2*x*(1229 + 7441*x + 4758*x^2 - 22954*x^3 - 34933*x^4 - 11816*x^5 + 7145*x^6 + 4720*x^7) / ((1 - x + 2*x^2 - x^3)*(1 - 2*x - 3*x^2 - x^3)). - Colin Barker, Dec 02 2018
EXAMPLE
Some solutions for n=4:
..0..2..0..2..0..1..1....1..1..2..1..1..0..2....1..0..2..0..2..0..2
..2..0..2..0..2..0..1....0..2..0..2..0..2..0....1..2..0..2..0..2..0
..0..2..0..2..0..2..1....2..0..2..0..2..0..2....1..0..2..0..2..0..1
..2..0..2..0..2..0..2....0..2..0..2..0..2..0....1..2..0..2..0..2..1
..0..2..0..2..0..2..0....2..0..2..0..2..0..2....1..0..2..0..2..0..2
..1..1..1..0..1..1..1....0..2..0..1..1..1..1....0..2..0..2..0..2..0
CROSSREFS
Column 5 of A252228.
Sequence in context: A252105 A252098 A252097 * A283640 A043588 A043798
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 15 2014
STATUS
approved