login
Number of (n+2)X(4+2) 0..3 arrays with every 3X3 subblock row and column sum equal to 1 3 4 6 or 7 and every 3X3 diagonal and antidiagonal sum not equal to 1 3 4 6 or 7
1

%I #4 Dec 15 2014 08:25:20

%S 19794,44322,332462,1180226,11207238,84935426,301990806,2868905558,

%T 21743274306,77309414066,734439412518,5566277622866,19791209309526,

%U 188016488368598,1424967069625986,5066549580829106,48132221017596198

%N Number of (n+2)X(4+2) 0..3 arrays with every 3X3 subblock row and column sum equal to 1 3 4 6 or 7 and every 3X3 diagonal and antidiagonal sum not equal to 1 3 4 6 or 7

%C Column 4 of A252210

%H R. H. Hardin, <a href="/A252206/b252206.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 260*a(n-3) -1023*a(n-6) -260*a(n-9) +1024*a(n-12) for n>15

%e Some solutions for n=2

%e ..1..3..0..1..3..3....3..1..0..0..1..3....2..2..0..2..2..3....1..3..3..1..3..3

%e ..1..3..3..1..3..3....1..2..1..1..2..1....2..2..3..2..2..0....0..2..2..3..2..2

%e ..2..1..1..2..1..1....0..1..3..0..1..0....3..0..1..3..3..1....0..2..2..3..2..2

%e ..1..0..0..1..0..0....0..1..3..3..1..3....2..2..0..2..2..3....1..0..0..1..3..3

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 15 2014