Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Dec 15 2014 08:23:02
%S 2680,4743,9312,19794,51024,125554,278710,763726,1944090,4393122,
%T 12184346,31155178,70732458,196510762,502312306,1143167546,3175587782,
%U 8108392378,18490987722,51342152722,130937041938,299194452074
%N Number of (n+2)X(1+2) 0..3 arrays with every 3X3 subblock row and column sum equal to 1 3 4 6 or 7 and every 3X3 diagonal and antidiagonal sum not equal to 1 3 4 6 or 7
%C Column 1 of A252210
%H R. H. Hardin, <a href="/A252203/b252203.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) +a(n-2) +33*a(n-3) -31*a(n-4) -35*a(n-5) -288*a(n-6) +218*a(n-7) +385*a(n-8) +255*a(n-9) +417*a(n-10) -1371*a(n-11) -54*a(n-12) -992*a(n-13) +1178*a(n-14) +1150*a(n-15) -740*a(n-16) +320*a(n-17) -476*a(n-18) -448*a(n-19) +512*a(n-20) -64*a(n-21) for n>26
%e Some solutions for n=4
%e ..1..2..0....1..2..1....0..0..3....0..0..3....2..1..0....3..2..2....1..2..0
%e ..0..2..2....0..1..3....1..2..1....3..1..3....3..3..1....1..3..0....2..1..0
%e ..0..2..2....3..1..3....0..1..0....1..2..1....2..2..0....0..2..2....1..0..3
%e ..1..0..3....1..2..1....3..1..3....3..1..0....2..2..3....3..2..2....0..3..3
%e ..3..2..2....0..1..3....1..2..1....0..1..3....3..3..1....1..0..0....2..0..1
%e ..0..1..2....3..1..0....3..3..0....1..1..1....2..2..0....0..2..2....2..3..2
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 15 2014