login
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 3 4 6 or 7
9

%I #4 Dec 14 2014 12:46:18

%S 172,134,134,209,156,209,439,431,431,439,909,1183,1535,1183,909,1864,

%T 3163,5233,5233,3163,1864,3905,8684,18047,22766,18047,8684,3905,8406,

%U 24031,62277,96481,96481,62277,24031,8406,18168,66098,213689,409028

%N T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 3 4 6 or 7

%C Table starts

%C ...172....134.....209.......439........909........1864.........3905

%C ...134....156.....431......1183.......3163........8684........24031

%C ...209....431....1535......5233......18047.......62277.......213689

%C ...439...1183....5233.....22766......96481......409028......1741344

%C ...909...3163...18047.....96481.....503968.....2670175.....14105069

%C ..1864...8684...62277....409028....2670175....17562129....115183261

%C ..3905..24031..213689...1741344...14105069...115183261....937980660

%C ..8406..66098..735011...7424211...74389231...755607636...7634089505

%C .18168.181896.2535415..31630024..393421141..4967204787..62282795715

%C .39279.501355.8731891.134638253.2079994010.32613906904.507708323758

%H R. H. Hardin, <a href="/A252139/b252139.txt">Table of n, a(n) for n = 1..449</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 10] for n>12

%F k=2: [order 9] for n>11

%F k=3: [order 16] for n>17

%F k=4: [order 24] for n>26

%F k=5: [order 44] for n>46

%F k=6: [order 72] for n>74

%e Some solutions for n=4 k=4

%e ..2..3..3..3..3..3....3..3..3..3..3..2....3..3..3..3..2..3....3..3..3..3..3..3

%e ..3..3..2..3..3..3....3..3..2..3..3..3....3..3..3..3..3..2....2..3..3..2..3..3

%e ..3..3..3..3..3..3....2..3..3..3..3..3....3..2..3..3..3..3....3..3..3..3..3..3

%e ..3..2..3..3..3..3....3..3..3..3..3..3....3..3..3..3..3..3....3..3..3..3..3..3

%e ..3..3..3..3..3..3....3..2..3..3..3..3....2..3..3..3..3..2....3..3..3..3..2..3

%e ..3..3..3..3..3..2....3..3..3..3..3..2....3..2..3..3..2..3....3..3..3..3..3..3

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 14 2014