login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+2)X(6+2) 0..3 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 3 4 6 or 7
2

%I #4 Dec 14 2014 12:44:50

%S 1864,8684,62277,409028,2670175,17562129,115183261,755607636,

%T 4967204787,32613906904,214022771560,1405186467767,9227158423609,

%U 60580408167599,397722666714982,2611240940819477,17144272724693612,112560751779945146

%N Number of (n+2)X(6+2) 0..3 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 3 4 6 or 7

%C Column 6 of A252139

%H R. H. Hardin, <a href="/A252137/b252137.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A252137/a252137.txt">Empirical recurrence of order 72</a>

%F Empirical recurrence of order 72 (see link above)

%e Some solutions for n=3

%e ..3..3..3..2..3..3..3..3....3..3..2..3..3..3..2..3....2..3..3..3..3..3..3..2

%e ..3..2..3..3..3..2..3..3....3..3..3..3..3..3..3..3....3..3..3..3..3..3..3..3

%e ..3..3..3..3..3..3..3..3....3..2..3..3..3..2..3..3....3..3..3..2..3..3..2..3

%e ..3..3..3..3..3..3..3..3....3..3..3..3..3..3..3..2....3..2..3..3..3..3..3..3

%e ..3..3..2..3..3..3..3..3....2..3..3..3..3..3..2..0....3..3..3..3..3..3..3..3

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 14 2014