login
Number of (n+2)X(6+2) 0..3 arrays with every 3X3 subblock row and column sum not equal to 0 3 4 6 or 7 and every 3X3 diagonal and antidiagonal sum equal to 0 3 4 6 or 7
1

%I #4 Dec 14 2014 10:42:04

%S 9640,120600,1322632,2564965,40402457,515273273,913218432,16209952502,

%T 217606042342,371233200163,6917437951509,94517054463531,

%U 159125805610601,3015930049335889,41457570098721225,69486855759107968

%N Number of (n+2)X(6+2) 0..3 arrays with every 3X3 subblock row and column sum not equal to 0 3 4 6 or 7 and every 3X3 diagonal and antidiagonal sum equal to 0 3 4 6 or 7

%C Column 6 of A252130

%H R. H. Hardin, <a href="/A252128/b252128.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 868*a(n-3) -251338*a(n-6) +31303314*a(n-9) -1562355495*a(n-12) +2667902050*a(n-15) +2036001452078*a(n-18) -50897333534826*a(n-21) +1045745304494*a(n-24) +13432920968609832*a(n-27) -136088426542191312*a(n-30) -394138046120818142*a(n-33) +13117896306127882288*a(n-36) -56673653102170010414*a(n-39) -171489927371134311914*a(n-42) +1930821571862111389228*a(n-45) -2969971596940665098694*a(n-48) -15691544597797458064414*a(n-51) +60195727469018420135322*a(n-54) -18425774814964242441790*a(n-57) -221007351593006545195382*a(n-60) +351200597093022652247912*a(n-63) -1699141009246819204192*a(n-66) -375553573660010348011562*a(n-69) +243573083285838143235369*a(n-72) +29890248258837795683634*a(n-75) -63879766913268664258948*a(n-78) +10566215714611654477810*a(n-81) +2627787588870559717725*a(n-84) -563760170081734493500*a(n-87) +21965898788460900000*a(n-90) for n>94

%e Some solutions for n=2

%e ..2..0..0..2..3..0..2..0....3..0..2..0..3..2..0..3....0..3..2..0..0..2..3..0

%e ..2..3..3..2..3..3..2..3....3..3..2..3..3..2..0..0....2..2..1..2..2..1..2..2

%e ..1..2..2..1..2..2..1..2....2..2..1..2..2..1..2..2....0..3..2..0..3..2..3..3

%e ..2..3..0..2..0..0..2..0....0..0..2..3..3..2..3..0....0..0..2..0..3..2..0..3

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 14 2014