%I #4 Dec 14 2014 07:29:20
%S 1417,1929,1568,1600,1884,2058,2468,3149,3950,5208,6792,8716,11582,
%T 15298,19912,26490,35242,46364,61862,82494,108984,145626,194574,
%U 257870,344814,461252,612860,819926,1097602,1461226,1955936,2620002,3493420,4678324
%N Number of (n+2)X(1+2) 0..3 arrays with every 3X3 subblock row and column sum equal to 0 2 3 6 or 7 and every 3X3 diagonal and antidiagonal sum not equal to 0 2 3 6 or 7
%C Column 1 of A252114
%H R. H. Hardin, <a href="/A252107/b252107.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 7*a(n-3) +2*a(n-5) -18*a(n-6) -11*a(n-8) +20*a(n-9) -a(n-10) +20*a(n-11) -8*a(n-12) +4*a(n-13) -11*a(n-14) -4*a(n-16) -4*a(n-17) -2*a(n-19) +4*a(n-20) +5*a(n-22) -2*a(n-25) for n>33
%e Some solutions for n=4
%e ..1..2..3....2..1..3....3..1..2....2..3..2....2..3..1....2..3..2....0..1..2
%e ..2..2..2....1..2..3....2..1..3....1..2..0....0..0..2....2..3..2....3..2..2
%e ..0..2..1....0..3..0....2..0..1....0..2..1....0..0..3....3..0..3....0..3..3
%e ..1..2..0....2..1..0....2..1..3....2..2..2....3..2..1....2..3..2....3..2..2
%e ..2..2..2....0..3..0....3..1..2....1..2..3....0..1..2....2..3..2....3..2..2
%e ..3..3..1....1..3..3....1..1..1....0..2..1....3..0..0....3..0..3....1..3..3
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 14 2014