login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum equal to 0 3 4 6 or 7 and every 3X3 diagonal and antidiagonal sum not equal to 0 3 4 6 or 7
9

%I #4 Dec 14 2014 07:17:13

%S 2458,4581,4581,6549,4866,6549,10605,5087,5087,10605,21457,8941,10878,

%T 8941,21457,38599,21405,26996,26996,21405,38599,70372,50222,86550,

%U 86575,86550,50222,70372,150102,120128,252110,329544,329544,252110,120128

%N T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum equal to 0 3 4 6 or 7 and every 3X3 diagonal and antidiagonal sum not equal to 0 3 4 6 or 7

%C Table starts

%C ...2458....4581.....6549.....10605......21457.......38599........70372

%C ...4581....4866.....5087......8941......21405.......50222.......120128

%C ...6549....5087....10878.....26996......86550......252110.......727203

%C ..10605....8941....26996.....86575.....329544.....1129324......3681127

%C ..21457...21405....86550....329544....1704334.....7637420.....31734323

%C ..38599...50222...252110...1129324....7637420....41913367....204205735

%C ..70372..120128...727203...3681127...31734323...204205735...1113772174

%C .150102..312242..2385233..14793289..169483164..1415634760..10036222063

%C .279508..762514..7252003..52094021..790459932..8021937546..65817065181

%C .526503.1878978.21530207.172583949.3479889673.40908964043.375634409542

%H R. H. Hardin, <a href="/A252105/b252105.txt">Table of n, a(n) for n = 1..448</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 69] for n>77

%F k=2: [order 47] for n>53

%F k=3: [order 57] for n>62

%F k=4: [order 66] for n>71

%F k=5: [order 99] for n>104

%e Some solutions for n=4 k=4

%e ..1..3..3..1..3..3....0..2..1..1..2..1....3..2..2..0..2..2....2..3..2..2..0..2

%e ..0..3..3..1..3..0....0..1..3..0..1..3....3..2..2..3..2..2....3..1..3..3..1..0

%e ..2..1..1..2..1..1....3..1..0..3..1..0....1..0..3..1..3..0....2..0..2..2..3..2

%e ..1..3..0..1..3..3....1..2..1..1..2..1....0..2..2..3..2..2....2..3..2..2..3..2

%e ..1..0..3..1..0..3....0..1..3..0..1..3....3..2..2..0..2..2....3..1..3..3..1..0

%e ..2..1..1..2..1..0....3..1..0..3..1..0....1..3..0..1..3..0....2..3..2..2..0..2

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 14 2014