login
Number of (n+2)X(5+2) 0..3 arrays with every 3X3 subblock row and column sum equal to 0 3 4 6 or 7 and every 3X3 diagonal and antidiagonal sum not equal to 0 3 4 6 or 7
1

%I #4 Dec 14 2014 07:15:04

%S 21457,21405,86550,329544,1704334,7637420,31734323,169483164,

%T 790459932,3479889673,18706391466,91043129368,418223127716,

%U 2254366419582,11352345472860,53739574080147,289817124368932,1494616315847046

%N Number of (n+2)X(5+2) 0..3 arrays with every 3X3 subblock row and column sum equal to 0 3 4 6 or 7 and every 3X3 diagonal and antidiagonal sum not equal to 0 3 4 6 or 7

%C Column 5 of A252105

%H R. H. Hardin, <a href="/A252102/b252102.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 419*a(n-3) -70167*a(n-6) +6236865*a(n-9) -333170576*a(n-12) +11676690671*a(n-15) -288551456512*a(n-18) +5310247754414*a(n-21) -75073610374904*a(n-24) +822892975068095*a(n-27) -6986089458256583*a(n-30) +45993269554777658*a(n-33) -237126452019118372*a(n-36) +974986344582364366*a(n-39) -3267582989641839281*a(n-42) +9089978079382803677*a(n-45) -21186863339894792432*a(n-48) +41410970641421755322*a(n-51) -67520255188129433640*a(n-54) +90645376678044168245*a(n-57) -97733987436525433740*a(n-60) +81669884453673439219*a(n-63) -50799167235576596653*a(n-66) +22478815112080389649*a(n-69) -6500464208520554995*a(n-72) +792861188441343816*a(n-75) +302117355277328480*a(n-78) -216992987582418752*a(n-81) +70315902224257024*a(n-84) -14579206133125120*a(n-87) +2077090322808832*a(n-90) -197994773217280*a(n-93) +10479806185472*a(n-96) -221157261312*a(n-99) for n>104

%e Some solutions for n=3

%e ..3..1..3..0..1..3..3....3..3..1..3..3..1..3....2..2..3..2..2..0..2

%e ..3..1..0..3..1..0..3....3..3..1..3..3..1..0....3..0..1..3..0..1..3

%e ..1..2..1..1..2..1..1....1..1..2..1..1..2..1....2..2..0..2..2..3..2

%e ..3..1..3..0..1..3..3....3..0..1..3..0..1..3....2..2..3..2..2..0..2

%e ..3..1..0..3..1..3..0....0..3..1..0..3..1..3....3..0..1..3..3..1..3

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 14 2014