Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Dec 13 2014 06:08:14
%S 1552,2440,2440,2812,2454,2812,3494,2552,2552,3494,5192,3030,2674,
%T 3030,5192,7642,6136,4390,4390,6136,7642,10084,10324,10114,6562,10114,
%U 10324,10084,15096,14924,17166,16536,16536,17166,14924,15096,22090,28990,26840
%N T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum not 1 3 6 or 8 and every diagonal and antidiagonal sum 1 3 6 or 8
%C Table starts
%C ..1552..2440...2812...3494....5192....7642....10084.....15096.....22090
%C ..2440..2454...2552...3030....6136...10324....14924.....28990.....52526
%C ..2812..2552...2674...4390...10114...17166....26840.....60924....113000
%C ..3494..3030...4390...6562...16536...29180....45444....113456....205932
%C ..5192..6136..10114..16536...53346..112542...191804....603460...1370412
%C ..7642.10324..17166..29180..112542..233342...398502...1545586...3493324
%C .10084.14924..26840..45444..191804..398502...658902...2988638...6379018
%C .15096.28990..60924.113456..603460.1545586..2988638..16790430..48091358
%C .22090.52526.113000.205932.1370412.3493324..6379018..48091358.127185206
%C .33394.86904.193072.339128.2559304.6364926.11153632.100546914.249860090
%H R. H. Hardin, <a href="/A252053/b252053.txt">Table of n, a(n) for n = 1..576</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 59] for n>69
%F k=2: [order 47] for n>54
%F k=3: [order 46] for n>52
%F k=4: [order 45] for n>50
%F k=5: [order 62] for n>66
%F k=6: [order 71] for n>75
%F k=7: [order 69] for n>73
%e Some solutions for n=4 k=4
%e ..3..3..1..3..1..3....2..1..1..2..1..1....3..1..0..3..2..0....0..0..0..2..0..2
%e ..2..3..2..0..2..0....1..3..0..1..3..3....3..2..2..1..1..3....1..2..1..2..1..2
%e ..2..1..2..1..2..1....2..1..1..2..1..1....1..1..3..0..2..2....1..3..1..0..1..3
%e ..3..1..0..1..3..1....2..1..1..2..1..1....3..2..2..1..1..0....2..0..2..3..2..0
%e ..0..2..3..2..0..2....1..0..3..1..0..3....3..1..0..3..2..2....2..1..2..1..2..1
%e ..1..2..1..2..1..2....2..1..1..2..1..1....3..2..2..1..1..0....0..1..3..1..3..3
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 13 2014