login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the concatenation of first n terms of A033307.
4

%I #62 Oct 25 2022 10:19:54

%S 1,12,123,1234,12345,123456,1234567,12345678,123456789,1234567891,

%T 12345678910,123456789101,1234567891011,12345678910111,

%U 123456789101112,1234567891011121,12345678910111213,123456789101112131,1234567891011121314

%N a(n) is the concatenation of first n terms of A033307.

%H Harvey P. Dale, <a href="/A252043/b252043.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = floor(C*10^n) with C the Champernowne constant, 0.123456789101112131415..., A033307.

%F a(n) = floor(A007908(n)/10^n) For n>=10.

%e a(3)=123.

%p a[0]:= 0;

%p count:= 0:

%p for x from 1 to 30 do

%p L:= convert(x,base,10);

%p for i from 1 to nops(L) do

%p count:= count+1;

%p a[count]:= a[count-1]*10+L[-i];

%p od

%p od:

%p seq(a[i],i=1..count); # _Robert Israel_, Jan 11 2015

%t b[1] = 1

%t b[n_] := b[n - 1]*10^(Floor[Log[10, 10n]]) + n

%t Table[Floor[b[n] /10^(n)], {n, 10, 200}]

%t Module[{nn=20,ch},ch=RealDigits[ChampernowneNumber[],10,nn][[1]];Table[ FromDigits[ Take[ch,n]],{n,nn}]] (* _Harvey P. Dale_, Aug 31 2015 *)

%o (Python)

%o from itertools import islice

%o def bgen(): yield from (c for n in count(1) for c in str(n) )

%o def agen():

%o s, g = "", bgen()

%o while True:

%o s += next(g); yield int(s)

%o print(list(islice(agen(), 20))) # _Michael S. Branicky_, Oct 25 2022

%Y Cf. A007908 (concatenate 1 through n), A033307.

%K nonn,base

%O 1,2

%A _José de Jesús Camacho Medina_, Dec 15 2014

%E Definition corrected by _Zak Seidov_, Jan 18 2015