login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252011
Number of (n+2) X (4+2) 0..3 arrays with every 3 X 3 subblock row and column sum 1 3 6 or 8 and every diagonal and antidiagonal sum not 1 3 6 or 8.
1
1618, 2002, 2170, 3814, 8482, 16994, 29954, 67714, 136002, 239874, 541762, 1088002, 1918978, 4334082, 8704002, 15351810, 34672642, 69632002, 122814466, 277381122, 557056002, 982515714, 2219048962, 4456448002, 7860125698, 17752391682
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 8*a(n-3) - 8*a(n-4) for n>12.
Empirical g.f.: 2*x*(809 + 192*x + 84*x^2 - 5650*x^3 + 798*x^4 + 3584*x^5 - 96*x^6 + 208*x^7 + 96*x^8 + 96*x^9 - 96*x^10 - 32*x^11) / ((1 - x)*(1 - 2*x)*(1 + 2*x + 4*x^2)). - Colin Barker, Dec 01 2018
EXAMPLE
Some solutions for n=4:
..2..3..1..2..3..1....1..2..3..1..2..3....1..1..1..1..1..1....2..2..2..2..2..2
..2..2..2..2..2..2....1..1..1..1..1..1....3..1..2..3..1..2....2..3..1..2..0..1
..2..1..0..2..1..3....1..3..2..1..0..2....2..1..3..2..1..3....2..1..0..2..1..0
..2..3..1..2..0..1....1..2..3..1..2..3....1..1..1..1..1..1....2..2..2..2..2..2
..2..2..2..2..2..2....1..1..1..1..1..1....3..1..2..0..1..2....2..3..1..2..0..1
..2..3..3..2..1..3....1..0..2..1..3..2....2..1..3..2..1..0....2..1..0..2..1..3
CROSSREFS
Column 4 of A252015.
Sequence in context: A236060 A231048 A231423 * A277111 A345597 A345856
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 12 2014
STATUS
approved