login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum not 0 1 2 7 8 or 9 and every diagonal and antidiagonal sum 0 1 2 7 8 or 9
9

%I #4 Dec 12 2014 07:24:08

%S 2930,9822,9822,41682,73222,41682,138390,516108,516108,138390,463054,

%T 2703512,4379034,2703512,463054,1762248,16324414,26230040,26230040,

%U 16324414,1762248,6881308,113817844,196459816,153525420,196459816

%N T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum not 0 1 2 7 8 or 9 and every diagonal and antidiagonal sum 0 1 2 7 8 or 9

%C Table starts

%C .....2930.......9822........41682.......138390.........463054.........1762248

%C .....9822......73222.......516108......2703512.......16324414.......113817844

%C ....41682.....516108......4379034.....26230040......196459816......1645790820

%C ...138390....2703512.....26230040....153525420.....1175144274.....11222619848

%C ...463054...16324414....196459816...1175144274....10630171636....144374047558

%C ..1762248..113817844...1645790820..11222619848...144374047558...2806746475910

%C ..6881308..782954632..13277304274..98312125934..1633057450764..41357385753908

%C .25756230.5188534650.103969785600.803257677008.16362554029592.560931930325822

%H R. H. Hardin, <a href="/A251983/b251983.txt">Table of n, a(n) for n = 1..264</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 31] for n>34

%F k=2: [order 47] for n>53

%F k=3: [order 56] for n>60

%e Some solutions for n=2 k=4

%e ..0..3..0..3..0..1....0..3..0..2..1..3....0..3..0..3..0..3....0..3..1..2..0..1

%e ..3..0..3..0..3..0....3..0..3..0..3..1....3..0..3..0..3..1....3..0..3..0..3..0

%e ..0..3..0..3..1..2....0..3..0..3..0..2....1..2..0..3..0..1....1..2..0..3..0..3

%e ..2..0..2..1..2..1....2..2..2..1..1..2....2..2..2..0..2..1....2..1..2..0..3..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 12 2014