

A251974


T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with nondecreasing sum of every two consecutive values in every row and column


7



256, 1600, 1600, 10000, 20000, 10000, 40000, 250000, 250000, 40000, 160000, 1750000, 6250000, 1750000, 160000, 490000, 12250000, 76562500, 76562500, 12250000, 490000, 1500625, 60025000, 937890625, 1500625000, 937890625
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Table starts
.....256......1600.......10000.........40000..........160000............490000
....1600.....20000......250000.......1750000........12250000..........60025000
...10000....250000.....6250000......76562500.......937890625........7353062500
...40000...1750000....76562500....1500625000.....29412250000......345888060000
..160000..12250000...937890625...29412250000....922368160000....16270574342400
..490000..60025000..7353062500..345888060000..16270574342400...410018473428480
.1500625.294122500.57648010000.4067643585600.287012931399936.10332465530397696


LINKS

R. H. Hardin, Table of n, a(n) for n = 1..160


FORMULA

Empirical for column k:
k=1: [linear recurrence of order 24; also a polynomial of degree 12 plus a quasipolynomial of degree 10 with period 2]
k=2: [order 36; also a polynomial of degree 18 plus a quasipolynomial of degree 16 with period 2]
k=3: [order 48; also a polynomial of degree 24 plus a quasipolynomial of degree 22 with period 2]
k=4: [polynomial of degree 30 plus a quasipolynomial of degree 28 with period 2]


EXAMPLE

Some solutions for n=2 k=4
..0..0..0..1..0....1..1..1..1..2....1..0..1..1..1....0..0..0..0..0
..1..0..1..0..3....1..0..2..0..2....0..0..0..0..2....0..0..0..0..0
..2..1..2..1..2....2..2..2..2..3....1..3..2..3..2....2..1..2..2..3


CROSSREFS

Column 1 is A250429
Column 3 is A250440
Sequence in context: A237915 A238081 A238074 * A250429 A238155 A238148
Adjacent sequences: A251971 A251972 A251973 * A251975 A251976 A251977


KEYWORD

nonn,tabl


AUTHOR

R. H. Hardin, Dec 12 2014


STATUS

approved



