login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+2)X(5+2) 0..3 arrays with every 3X3 subblock row and column sum prime and every diagonal and antidiagonal sum nonprime
1

%I #4 Dec 11 2014 12:46:09

%S 4346,3609,8756,25231,87011,285399,875435,3103838,10096792,31749014,

%T 113723049,368726042,1185416828,4275496283,13829769780,45301551569,

%U 164329016957,530458381091,1763892629076,6427277914092,20713967166825

%N Number of (n+2)X(5+2) 0..3 arrays with every 3X3 subblock row and column sum prime and every diagonal and antidiagonal sum nonprime

%C Column 5 of A251950

%H R. H. Hardin, <a href="/A251947/b251947.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 69*a(n-3) -1170*a(n-6) +2238*a(n-9) -57909*a(n-12) +222992*a(n-15) -1407264*a(n-18) +4017948*a(n-21) -19586465*a(n-24) +37664446*a(n-27) -93459214*a(n-30) +89190666*a(n-33) -1008083*a(n-36) -13979004*a(n-39) -3987484*a(n-42) +2116364*a(n-45) +401146*a(n-48) -128423*a(n-51) -852*a(n-54) for n>57

%e Some solutions for n=4

%e ..1..1..0..1..1..0..1....2..0..0..2..3..0..2....1..1..0..1..1..3..1

%e ..3..0..2..3..0..2..0....3..1..1..0..1..1..0....1..1..3..1..1..0..1

%e ..1..1..0..1..1..0..1....0..1..1..3..1..1..0....0..0..2..0..3..2..0

%e ..1..1..0..1..1..0..1....2..3..0..2..0..0..2....1..1..0..1..1..0..1

%e ..0..0..2..3..0..2..3....0..1..1..0..1..1..0....1..1..0..1..1..0..1

%e ..1..1..0..1..1..3..3....3..1..1..0..1..1..0....0..3..2..0..0..2..3

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 11 2014