login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with no row, column, diagonal or antidiagonal in any 3X3 subblock summing to 4 or 5
4

%I #4 Dec 10 2014 17:10:39

%S 9552,87472,87472,910694,1524496,910694,9385210,31829596,31829596,

%T 9385210,97416802,634891856,1346875728,634891856,97416802,1020849168,

%U 13021221976,55159959296,55159959296,13021221976,1020849168,10715275730

%N T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with no row, column, diagonal or antidiagonal in any 3X3 subblock summing to 4 or 5

%C Table starts

%C .........9552.........87472..........910694.........9385210........97416802

%C ........87472.......1524496........31829596.......634891856.....13021221976

%C .......910694......31829596......1346875728.....55159959296...2346358649878

%C ......9385210.....634891856.....55159959296...4659453629112.405801426711494

%C .....97416802...13021221976...2346358649878.405801426711494

%C ...1020849168..273455709590.101807826393734

%C ..10715275730.5736244294410

%C .112555491252

%H R. H. Hardin, <a href="/A251909/b251909.txt">Table of n, a(n) for n = 1..40</a>

%e Some solutions for n=1 k=4

%e ..1..1..1..1..3..1....2..3..3..3..3..2....3..3..3..3..2..3....1..1..1..3..1..1

%e ..1..1..1..1..1..1....3..3..3..3..3..3....3..2..3..3..3..2....3..1..1..1..1..3

%e ..1..1..1..1..1..1....3..3..3..3..2..3....3..3..3..3..3..3....1..1..1..1..1..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 10 2014