Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Dec 10 2014 16:43:48
%S 5264,1962,2772,4208,10266,17976,28288,66216,121684,210948,502782,
%T 957268,1775466,4040932,8403774,16389916,36469244,76274736,161027262,
%U 348138252,747214432,1575745364,3498942344,7430457700,16117264814,34861132976
%N Number of (n+2)X(4+2) 0..3 arrays with every 3X3 subblock row and column sum unequal to 4 or 5 and every diagonal and antidiagonal sum equal to 4 or 5
%C Column 4 of A251905
%H R. H. Hardin, <a href="/A251901/b251901.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-2) +5*a(n-3) +22*a(n-4) -15*a(n-5) -41*a(n-6) -110*a(n-7) -150*a(n-8) +207*a(n-9) +98*a(n-10) +744*a(n-11) +359*a(n-12) -534*a(n-13) +19*a(n-14) -1709*a(n-15) -478*a(n-16) +193*a(n-17) -365*a(n-18) +2106*a(n-19) +554*a(n-20) +1279*a(n-21) +380*a(n-22) -2232*a(n-23) -370*a(n-24) -1512*a(n-25) -32*a(n-26) +1488*a(n-27) +16*a(n-28) +128*a(n-29) +16*a(n-30) -64*a(n-31) -64*a(n-33) for n>37
%e Some solutions for n=4
%e ..1..3..3..0..0..2....0..0..2..1..3..3....2..0..0..3..3..1....2..0..1..0..1..0
%e ..1..0..2..1..3..3....1..3..3..0..0..2....3..3..2..1..0..0....3..0..3..0..3..0
%e ..1..3..3..0..0..2....0..0..2..1..3..3....1..0..0..3..3..1....3..1..3..2..3..1
%e ..0..0..1..2..3..3....2..3..3..0..0..2....3..3..1..2..0..0....0..2..0..1..0..2
%e ..2..3..3..0..0..2....0..0..2..1..3..3....2..0..0..3..3..2....0..3..0..3..0..3
%e ..0..0..2..1..3..2....1..3..3..0..0..1....3..3..2..1..0..0....1..3..2..2..2..3
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 10 2014