login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+2) X (3+2) 0..3 arrays with every 3 X 3 subblock row and column sum not 2 3 6 or 7 and every diagonal and antidiagonal sum 2 3 6 or 7.
1

%I #8 Nov 30 2018 15:21:45

%S 1280,602,556,778,1260,1636,2478,3940,5958,9178,14534,22666,35250,

%T 55690,88338,138082,217874,348706,546498,861730,1385538,2174338,

%U 3427394,5523586,8674050,13670530,22057218,34649602,54604034,88154626,138505218

%N Number of (n+2) X (3+2) 0..3 arrays with every 3 X 3 subblock row and column sum not 2 3 6 or 7 and every diagonal and antidiagonal sum 2 3 6 or 7.

%H R. H. Hardin, <a href="/A251889/b251889.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) + 6*a(n-3) - 6*a(n-4) - 8*a(n-6) + 8*a(n-7) for n>12.

%F Empirical g.f.: 2*x*(640 - 339*x - 23*x^2 - 3729*x^3 + 2275*x^4 + 326*x^5 + 4875*x^6 - 3427*x^7 - 303*x^8 - 28*x^9 + 220*x^10 - 484*x^11) / ((1 - x)*(1 - 2*x^3)*(1 - 4*x^3)). - _Colin Barker_, Nov 30 2018

%e Some solutions for n=4:

%e ..0..0..1..0..0....2..3..0..1..0....3..3..2..3..0....2..1..1..2..1

%e ..0..0..1..0..0....1..0..0..1..0....3..3..2..3..3....1..0..0..1..0

%e ..1..1..3..1..1....2..1..1..3..1....2..2..0..2..2....1..0..0..1..0

%e ..0..0..1..0..0....1..0..0..1..0....3..3..2..3..3....2..1..1..3..1

%e ..3..0..1..0..3....1..0..0..1..0....3..3..2..3..0....1..0..0..1..3

%e ..1..1..2..1..1....3..1..1..2..1....2..2..0..2..2....1..0..0..1..0

%Y Column 3 of A251894.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 10 2014